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Abstract is proportional to the number of users. In the past few years,
number of companies such as PPLive and UUSee are using

Data-driven P2P streaming systems can potentially pro- the data-driven P2P approach to provide live-streaming or
vide good playback rate to a large number of viewers. One video-on-demand services [5]. The basic idea of the data-
important design problem in such P2P systems is to de-driven P2P streaming is for the server to organize the video
termine the optimal chunk selection policy that provides content into a stream ofchunks in playback order. The
high continuity playback under the server's upload capac- server uploads these stream of chunks to some randomly se-
ity constraint. We present a general and unified mathemat-lected peers. Peers, in return, upload chunks that they pos-
ical framework to analyze a large class of chunk selection sess and at the same time, request for chunks that they do
policies. The analytical framework is asymptotically exac not have. Given a large enough peer population, a sufficient
when the number of viewers is large. More importantly, we number of neighbors and sufficient buffer size at each peer,
provide some interesting observations on the optimal chunkthe data-driven P2P streaming approach can potentially de-
selection policy: it is of/-shaped and becomes more greedy liver a good playback performance for all peers.
as the upload capacity of the server increases. This insight For a P2P streaming service provider, the technical chal-
helps content providers to deploy large scale streaming sys lenge is how to design a system that can prowded
tems with a QoS-guarantee under a given cost constraint.playback continuityto a large population of viewersind
at the same time, reduce the operating cost of the system.
In general, the operating cost includes (a) the number of
servers needed to support a large viewing population, and
(b) the amount of traffic uploaded by these servers since
ISPs usually use the volume-based charging method for
these streaming service providers.

Video streaming is part of the basic service that we ex- At the heart of the P2P streaming protocol is the chunk
pectin the current Internet. There has been number of stud-selection algorithm: given a set of missing video chunks,
ies on how to provide streaming service using the client- which chunk should a peer request from its neighboring
server architecture and how to engineer streaming servergeers so as to enhance the system performance, e.g., play-
S0 as to provide the quality-of-service guarantees [1]. In back continuity. In [14, 15], authors propose sohegiris-
recent years, the attention is on how to providecalable tic chunk selection policies. These include (a) the greedy
streaming service to a large number of viewers. To this end,chunk selection, in which each peer requests the missing
IP multicast was proposed so that the server only needs tachunk with the most urgent playback deadline so as to max-
send a copy of video file and routers along the distribution imize its own playback continuity, (b) the rarest chunk pol-
network will relay all packets to different end users. How- icy, in which each peer requests the missing chunk with the
ever, due to security and deploymentissues [2], IP multicas furthest playback deadline with the aim to maximize the
has not been widely deployed. Instead, people are using aprarest piece so as to improve the scalability of the system.
plication layer multicast to deliver the video files to users  The insight is that the priority for selecting a chunk depend

Peer-to-peer (P2P) system is considered one form ofon two factors: playback urgency (based on the local view
application layer multicast. In particular, the data-driv  of a peer’s buffer), and distribution efficiency (based am th
model of P2P systems (e.g., BitTorrent) is shown to exhibit global scarcity of a chunk). A chunk policy based purely
high scalability property: the service rate of the P2P syste on playback urgency (i.e., the greedy chunk selection) can-

1. Introduction



not scale; whereas a policy based purely on distribution ef-we present the segmentation algorithm to improve the com-
ficiency (i.e., the rarest chunk selection) is asymptdijcal putational efficiency of evaluating a given policy. In Sec-
suboptimal as buffer becomes abundant compared to thdion 6, we present an adaptive algorithm so that the server
peer population size. One fundamental question we seek taan notify the optimal chunk selection to all peers whenever
answer is to discover thstructure” of the optimal chunk  there is any change in the system parameters. Experiments
selection policy That is, given the server’s upload capac- are carried out to illustrate the performance and robustnes
ity, the number of peers in the system and the buffer sizeof our proposals. Related work is given in Section 7 and
of each peers, determine the chunk selection policy so adinally, Section 8 concludes.

to maximize the average system playback continuity. The

contributions of our work are as follows. 2. System Models

e Instead of focusing on few heuristic algorithms, we
propose to study a large family of chunk selection poli-
cies, which we called thpriority-based chunk selec-
tion class

In this section, we present the model of a data-driven P2P
streaming system, as well as the buffering structure of each
peer in receiving and displaying the video chunks.

e We propose to use a general and unified analytical 2.1. Model of a P2P Streaming System

framework, thedensity dependent jump Markov pro-

cesg(DDJMP) [6] to analyze any chunk selection pol- Consider a P2P live-streaming system which needs to

icy in the above mentioned class, and we prove that serveM homogeneous peers. This P2P system has a logi-

our framework is asymptotically exact when we scale cal servetS, which organizes the video content into stream
up the system. of chunks in playback order. The serv&rhas an upload
) . bandwidth ofC (in unit of bit per second). In order to view
* We also propose the segmentation algorithm to reducehe jive-streaming program, there is a playback rate reguir
the computational complexity of evaluating the perfor- \ant of (in unit of bit per second). In this work, we con-
mance of a chunk selection policy. This algorithm fa- giqer a large scale P2P system whei@irc M. In other
pllltateg us to explorg the opt!mal chunk selection pol- words, the serve$ can only supporf = A% < 1 fraction

icy. This segmentation algorithm not only helps us t0 ot heers. Therefore, peers need to collaborate with each

to efficiently find the optimal policy, butitalso demon-  her to maximize their chance of continual playback.

strates the important influence of the server's upload  \we model this large scale P2P live-streaming network as
capacity on the class of chunk selection policies that 5 yiscrete time system. At each time slot, the seS/ep-

are Iikgly to include the optimal: namely, the more the |5ads one chunk of video to a fractiofi, of peers. Each

server is able to upload, the more the peers can affordehnk has a sequence number, starting from 1. Therefore,

to use the local greedy policy. at time slott, the servetS randomly selects’ peers and
uploads the video chunk of sequence nuntlierthese ran-
domly selected peers.

One important note is that for a P2P streaming service
provider, it is not only important to provide an adequate
service (e.g., sustainable playback rate) to thespeers,
but at the same time, the provider wants to minimize its op-
erating cost. Deploying and maintaining a large server con-
tribute to the operating cost, moreover, the amount of traffi

o We present a distributed adaptive algorithm so that the upload also contributes to the _operating cos'_[ since an ISP
server can notify all peers about the optimal chunk se- qsually charges a content provider ba_sed on its upload traf-
lection policy whenever there is any change in the sys- fic based on the volume-based charging model. Therefore,
tem parameters. the streaming service provider would like to support a large

population under a given continuity playback requirement
The balance of our paper is as follows. In Section 2, with a smallest value of as much as possible.

we provide the model of a data-driven P2P streaming sys- Each peer needs to receive and buffer these video chunks
tem. In Section 3, we define the family of chunk selection from the P2P streaming system. To achieve this, each peer
policies we study and present the density dependent jumpmaintains a local buffeB, which can cache up te video
Markov process framework in analyzing any policy in the chunks.5(1) is used to store the newest video chunk that
class. In Section 4, we explore the structure of the optimal the servesS is uploading in the current time slot, whi{n)
chunk selection policy and state its properties. In Sedion is used to store the oldest video chunk that is being played

e We show that the optimal chunk selection policy has
the " v”-shaped structure while the worst chunk se-
lection policy has theé' A"-shaped structure where
the shape refers to the priority of requesting missing
chunks in the peer’s buffer. Furthermore, the server
upload capacity is monotonically beneficial to achieve
higher playback continuity.



back. In other words, when the senéers uploading chunk  following, we present a general framework to model and
with sequence numbér, and if & > n — 1, then video analyze a large class of chunk selection policies.

chunkk — n + 1 is the chunk being played back by that

peer (provided that the video chunk is available5ifn)). 3. Chunk Selection Policies

At the end of each time slot, the video chunkBin) will

be discarded, and all chunks will beHifted left by one
position: video chunk in3(¢) will be shifted toB(i + 1),
fori = 1,...,n — 1. Figure 1 illustrates the dynamics
of buffer B. At the beginning of time slot, the serverS

is filling in B(1) and video chunks are available B(3), is used as the .

. . : playback buffer by the video player, there-
B(4), B.(G) an(_jB(’?) respec’qvely. Also, attime slef video fore, a peer only needs to request for a missing video chunk
chunkin(7) is fed to the video player for playback. At the in B(2) to B(n—1)

beginning of time slot+1, all video chunks irB are shifted
left by one position.

The chunk selection is modeled apuall process at the
beginning of the time slot, each peer randomly selects an-
other peer and requests a video chunk. Sific8 is used to
cache the video chunk uploaded by the seeandB(n)

Note that thispull modelhas two implications. Firstly,
a peer can be selected by multiple requesting peers. In this
case, we assume the selected peer has sufficient upload ca-

vi d;gdplt gyer B(n) B(1) sfeerdvebry s pacity to satisfy all requests at one time slot. It is impotta
to point out that wherd/ is sufficiently large, the probabil-
time slot t ity of being selected by many requesting peer is asymptot-
ically small. Secondly, if the selected peer does not pos-
time slot t+1 sess the requesting video chunk, the requesting peer loses
the chance to download in this time slot. As we will illus-
Figure 1: Buffer structurd with n = 7, servers fills B(1) trate, this simp!ificatio_n_helps us to analyze a large family
at time slott. of chunk selection policies.

Since the downloading bandwidth of a peer is limited,
when a peer has multiple missing chunks, it needs to decide
which chunk to download. In this paper, we study the chunk
selection policy which belongs to thiority-based chunk
selection class

When a peer joins the P2P streaming system, its buffer
B is initially empty. Eventually, each position &f may be
filled, either by the servef or by other peers. The goal
for each peer is to ensure the display buffer, nanily),

is filled in as many times as possible so as to maximize its pefinition 1 (Priority-based Chunk Selection Policy) A
probability of continuous video playback. We define priority-based chunk selection policy for buffBrwith size
N N I . n is represented by a permutation of length 2, where the

m(#)=Prob[B(i) is filled with video chunkji =1,...n. (1) i*" digit from the right is the relative selection priority of
Therefore, peers want to maximizgn) for continuous ~ B(i + 1), and larger value implies higher priority. In each
playback. Consider a client-server architecture (e.gh-wi time slot, when a peer has multiple missing video chunks in
out the assistance of P2P technology). Since the serveB(2) to B(n—1), the peer always choose the missing chunk
S randomly selects fraction of peers to upload, therefore With the highest selection priority to download.

m(1) = f. Due to the buffer shifting operation, it is not

N To illustrate, consider the example in Figure 1 in which
difficult to see thatr(n) = r(n — 1) =--- = w(1), or P g

the bufferB has sizen = 7. Therefore, we can use 5 digits
m(n) = f = C/(MR). ) to present a priqrity-based chunk S(_elec_:tion_ policy. Let say
the chunk selection policy 1321, which implies tha3(6)
Remark: From the above equation, we can see that a client- has the highest selection priority whi2) has the lowest
server architecture has a scalability problem. Whéris selection priority. At time slot, since the only missing
large and if a streaming service provider wants to have avideo chunks arés(5) and 5(2), therefore, this peer will
reasonable value of(n), the service provider needs to en- request for the missing video I8(5), or in other words, the
sureC ~ Mr. This translates to deploying many servers video chunk with the sequence number 4.
and uploading more traffic to viewers, which impliesavery ~ Note that the above definition allows us to represent a
high operating cost, especially when one wants to supportlarge family of chunk selection policies. For example:
a large number of viewers. To alleviate this problem, one Random Chunk Selection:under this chunk selection pol-
can rely on the P2P technology to fill in more video chunks icy, a peer requests to download any missing video chunk
in B. Moreover, which video chunk to request to fill in to  with equal probability Note that this is the policy used for
B (a.k.a,chunk selection poligyhas a significant impact on file distribution and it is shown to be very efficient [7]. For
the performance measure of continuous playback. In thea buffer5 with sizen, the random chunk selection policy



is represented by — 2 digits of 1's. For example, when is

n = 7, this chunk selection policy is specified bisl 11.

Greedy Chunk Selection Policy:under this chunk selec- S={(e1,ec2,...,em)ler €Cryk=1,...,M}. (3)

tion policy, a peer requests to download the missing video

chunk that has the earliest playback deadline. The objec-A close examination of the state spageeveals that the
tive of this chunk selection policy is that each peer tends number of states i§2") for any chunk selection policy

to maximize its probability of playback continuity. For a with buffer sizen. This implies that the direct approach
buffer B with sizen, the greedy chunk selection policy is of using DTMC as a modeling framework has a huge stor-
represented by — 2 digits with decreasing value fromthe age and computational requirement, especially if we want
left. For example, when = 7, this chunk selection policy  to model a realistic system with a reasonable value of buffer
is specified a§4321. sizen and a relatively large umber of peers (e/d.,> 500).
Rarest First Selection Policy: under this chunk selection Let us consider a different approach. Siddes n, in-
policy, a peer requests to download the missing video chunkstead of modeling the dynamics all peers, we model the
that has the largest sequence number (or the video chunkystem dynamics with a given chunk selection policy as a
that has just been pushed out by the selSer Thisis a  density dependent jump Markov process (DDJVE) Let
reasonable policy since this helps the rarest video chunk 0z, (t),c € C, be the fraction of peers with buffer state
spread faster in the P2P network and thereby improve theat time slott. A buffer changes its state after downloading
system scalability. For a buffe8 with sizen, the rarest 3 chunk. In the downloading process, a peer has probabil-

chunk selection policy is represented by- 2 digits with ity f to get the newest chunk from the main server, or it
increasing value. For example, when= 7, this chunk se-  randomly chooses another peer and download the highest
lection policy is specified as2345. priority missing chunk which the selected peer has.

Family of Mixed Selection Policy: one can specify a chunk Toillustrate, consider a system using a six-cell buffer and

selection policy that combines the advantages of the greedyhe rarest chunk selection policy. Assume the buffer state o
chunk selection and the rarest first selection. For example g peer is)10100 at time slott. If the peer gets the newest
whenn = 7, we can specify a number of mixed selection chunk from the main server, its buffer state will become
policies, say53124 or 42135. Note that the policys3124 101010 (after shifting) in the next time slot. If it does not
gives a higher weight to the chunk with the earliest play- get the newest chunk and it selects a peer with a buffer state
back deadline while the polic§2135 gives a higher weight  of 001110, then its buffer state will becomi1100 in the
to the chunk that has the highest sequence number. For bothext time slot. Note that due to the shifting, the lowest bit
of these policies, the rarest chunk K(2) and the video  of all possible states in the system is always equal to zero.
chunk with the earliest playback deadline#{6) have a Let 7(c) be the buffer state at the next time slot after a
higher selection priority than other video chunks, while th peer with buffer state downloads the newest chunk from
chunk in the middle of the buffer (e.g5(4) in this case)  he main server. Let(c, ¢') be the buffer state at the next
will have the lowest selection priority. time slot after a peer with buffer statelownloads a chunk
Note that the priority-based chunk selection represents asqm another peer with buffer staté Then at time slot,
large family of policies. For a buffe with sizen, thereare . () 1 fraction of peers in state download from the main
(n—2)! permutations so there are at le@st-2)! chunk se-  gerver and switch to statc), while z.(t)zo (t)(1 — f)
lection policies. Given that there are a lot of chunk setecti  fraction of peers in state download from another peer in
policies, what we need is a general and accurate modelingsiate’ and switch to state(c, ). Summing all possible
framework to evaluate and compare their performance. Ingczges that could generate state the next time slot, we get
the following, we discuss this modeling framework. the following equations that describes the system dynamics

3.1. Modeling Framework for Chunk Selection Policies T (t+1) = f Z zp(H)+(1—f) Z z;(t)z(t), c€Cy.
r(k)=c s(i,7)=c

The most direct approach to model any chunk selection _ _ (4)
policy is to use a discrete time Markov chain (DTMC). Let Lett — oo andz. be fraction of peers in statewhen the
C,, be the set of alh-digits binary numbers that represent System s stable, then for allc C,,, we have:
the buffer states, with th&” digit representing the state of
B(i), e.g., if theit” digitis ‘1’, it means the video chunk is Te=f Z xp+ (1 —f) Z xzizj, c€C. (B)
available inB(i) and "0’ otherwise. For example,if = 7, r(k)=c s(i,5)=c
then 1000001’ represents th&{(7) and 5(1) have video
chunks while other buffer cells do not have video chunk. Let b(c,i) be thei" bit of statec, then the probability
Let ¢, be the state of pedr, the state space of the DTMC that 5(¢) is filled with video chunk, which is denoted in



Equation (1), can be expressed as:

(i) = Z x., fori=1,... ,n.

c:b(c,i)=1

(6)

To illustrate the DDJMP framework, we apply it to the
following chunk selection policies:
e Rarest first chunk selection policy with buffer size- 4.
This system has eight possible states (siB¢e) is always

0): 0000, 0010, 0100, 0110, 1000, 1010, 1100, 1110. Based

on Equation (5), the fixed point equation are as follows:

zooto = f - Tx000, T1010 = [ - Tw100

o110 = f *Tx010, L1110 = f * Tx110

where

zoo00 = (1—f)(Zx000Zx000)
r1000 = (1—f)(
zot00 = (1—f)(

(A=)

1= f)(@4110T w550 + T4010T4140 + T5100T4x10)

Z4000L+100 + T+100Z%00)
Z4010T+0+0 + L+000Z+%10)

1100 =

With 7(1) = Zuus1,T(2) = Zus14,7(3) = Zu14+ and
m(4) = T1.4x. Here we use the notatior™to denote the
sum of all possible cases. For examplgio = zoo10 +
71010, T1x0 = L0100 + To110 + 1100 + Z1110,... EIC. NOtE
that one can determine the valuests via standard numer-
ical methods.

e Greedy chunk selection with buffer sire= 4. The
system has eight states (again, becaB&® is always 0).
Based on Equation (5), the fixed point equations are:

Zoo10 = f * Lx000, L1010 = f * %100

zorto = f - Txo010, T1110 = f - Te110
where
zoooo = (1= f)(z+000+000)
21000 = (1= f) (24000410 + T+100Z5%00)
20100 = (1= f)(@4010Z+0+0 + T+000Z+010)
1100 = (1*f)($*110$***0 + Tx010Tx1x0 + $*1oo$**1o)

These equations are only different from those of the rarest

first chunk selection policy at; oo andzgigo-
e Mixed chunk selection with buffer sizerof 5. There are

number of mixed selection policies, let us consider a partic

ular mixed selection policg12. For this system, there are

16 states and based on Equation (5), the fixed point equa

tions are:

200010 = [ * Tx0000, Zo0110 = f * Tx0010

201010 = f * Tx0100, 201110 = f * Tx0110

Z10010 = f * %1000, 10110 = f * Tx1010

11010 = f * %1100, T11110 = f *Tx1110

where

zoooo0 = (1 — f)(%x0000Z0000)

zo0100 = (1 — f)(24x0000T0%10 + T+0010+00%0)

zo1000 = (1 — f)(24x000070100 + T+0100L+0x00)

Zoi1i00 = (1 - f)($*0010$*01*0 + Z+x0100Tx0%10
+L40110T0%%0)

z10000 = (1 = f)(24x0000T+1550 + T+1000T+x000)

10100 = (1 — f)(Z20010Z«1540 + T£1000T 55510
+241010T 4500

z11000 = (1 = f)(240100T41520 4 T+1000T %100
+241100% 5%00)

Zi1100 = (1 - f)($*0110$*1**0 + Z41010Txx1x0

FZ41100 45510 F L1110 Tsssx0)

In essence, Eq. (4) is the density dependent jump
Markov process and it is an approximation to the original
Markov process. The right hand side of Eq. (4) gives the
expectation oft.(t + 1). Note that in the original Markov
processz.(t + 1) has a non-zero variance which causes
the Markov process to deviate from Eq. (4) for each time
slot. However, whenV/ is sufficiently large, the variance
of z.(t + 1) vanishes and Eq. (4) accurately describe the
original Markov process. As a matter of fact, we have the
follow result.

Theorem 1 The DDJMP described above converges al-
most surely, uniformly on all finite interval, 7], to the
solution of Eq.(4) wherd — oc.

Proof: Please refer to Theorem 8.1 in [6] |

Corollary 1 The steady state probability vectar =
{z.}ccc Of the P2P streaming system is given by Eq. (5).

Let us illustrate the accuracy of using the DDJMP frame-
work to model different chunk selection policies. Table 1
and Figure 2 compares the (1) simulation result, (2) our
DDJMP model, and (3) the stochastic model given by [15]
for the rarest First and the greedy chunk selection policies
In this study, the buffer size df is set ton = 8 and the
server's capacity can serve a fractionfof= 0.1 of users.

In Table 1, the number of peers i = 1000 and each
row shows different value of (i), the probability that buffer
B(i) is filled with video chunk, with the last row indicating
m(8), the probability of playback continuity. In Figure 2a
and 2b, the horizontal axes are number of pe&#3 and

the vertical axes are the probability of playback contipnuit
m(n), or the probability thaBs(n) is filled with video chunk.

In each figure, there are three curves: the simulation, the
DDJMP model and the stochastic model in [15]. We can



see that (1) the DDJMP model is more accurate than the ap-of peersM. By Theorem 1, the system playback continu-
proach in [15], and (2) the results provided by the DDIMP ity 7(n) converges to a fixed value & — oo, which can
model converges asymptotically when we increase the pop-be solved using the DDJMP framework. Since this value

ulation sizeM. This agrees with our theoretical claim in

Theorem 1.

3

(i) ] RF sim | RF DDJMP | RF [15] |

7(1) ] 0.0000] 0.0000 [ 0.0000
7(2) ] 0.1000] 0.1000 | 0.1000
7(3) ]| 0.1807] 0.1810 [ 0.1810
m(4) [ 0.3074] 0.3079 | 0.3024
7(5) || 0.4696| 0.4702 | 0.4496
7(6) || 0.6245] 0.6254 | 0.5858
m(7)] 0.7355] 0.7366 | 0.6863
7(8)] 0.8058] 0.8065 | 0.7538
[ (i) [ GD sim | GD DDJMP [ GD [15] ||
7(1)]] 0.0000] 0.0000 [ 0.0000
7(2) ] 0.1000] 0.1000 [ 0.1000
7(3)] 0.1375] 0.1373 [ 0.1296
m(4)[| 0.1879] 0.1877 [ 0.1715
7(5) [ 0.2600] 0.2599 [ 0.2330
7(6) ] 0.3688] 0.3687 | 0.3272
7(7) | 0.5342] 0.5342 [ 0.4759
7(8) ]| 0.7576] 0.7581 [ 0.7003

Table 1:7 (i) for M = 1000,n = 8, f = 0.1, RF= Rarest
First policy, GD= Greedy policy
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Figure 2: Simulation & theoretical results.= 8, f = 0.1

4. Exploring the Optimal Policy

The goal of this section is to explore tbptimal chunk

selection policy in the priority-based chunk selectiorssla

In the previous section, we naotice thatz), the probability

of playback continuity of the streaming system, depends on
multiple factors including (a) the server’s upload capacit
(which is represented by the fractigrin Equation (2)), (b)
chunk selection policy, (c) buffer sizen and, (d) number

only depends om, s, f, we denote this asymptotic play-
back continuity a€’(n, s, f) and use it as the performance
metric of policys. Letl; be the length of permutatios
thenn = [; + 2. So we may ignore the parameterand
write it asC(s, f).

Definition 2 (Optimal/Worst Chunk Selection Policy) Let
IT,, be the set of alh-permutations. The “optimal chunk
selection policy” for buffer sizen and initial fraction f
is defined asopt(n, f) = argmax,q , C(s, f). Con-
versely, the “worst chunk selection policy” for buffer
size n and initial fraction f is defined aswst(n, f) =

argminge , C(s, f).

In other words, the optimal policy is the one that reaches
the highest playback continuity while the worst policy is
the one reaches the lowest playback continuity. One pos-
sible way to find the optimal (worst) chunk selection pol-
icy for buffer sizen and initial fractionf is to enumerate

all (n — 2)! chunk selection policies and compute their re-
spectiveC(s, f). The policy which has the maximal (min-
imal) C(s, f) is the optimal (worst) chunk selection policy.
Obviously we need an efficient approach to overcome this
problem. But before we formally present a computationally
efficient method to find the optimal/worst chunk selection
policy, let us first define some terminologies.

Definition 3 (Greediness) A transpositidn, j) is an oper-
ation on a priority-based chunk selection policy. In essgnc

it swaps the priority ofB(i + 1) and B(j + 1) while the
priority of the others remain the same as before. A transpo-
sition is greedy if in the exchange, the higher buffer positi
results in higher priority. We say the chunk selection pol-
icy s is greedier than the chunk selection policif we can
obtains after some finite greedy transpositionson

For example, the transpositidi, 3) on policy 2134 re-
sults in the policy2431, and this transposition is greedy.
The policy4213 is greedier than the policy134 since we
can obtain the former by three greedy transpositions on the
later, namely: (1,2), (2,3) and (3,4).

Definition 4 (Concatenation operate) Let Ps(i) be the
priority of thei!" cell of policy counting from left to right
in policy s andl; be its length. Policy - r is defined such
thatls., = s +1,, Ps.r(i) = Ps(i) forl,. < i <l,.+1sand

Por(i) = Pr(i) + 1, for 1 <4 < 1,.

According to the above definition, the chunk selection
policy s - r can be split into two segments, where the upper
one has the same relative prioritysaand the lower one has
the same relative priority as Moreover, the lower segment



has higher priority than the upper segment. For example, let |/ [[ opt. cont.| opt. policy || worst cont. | worst policy ||

s = 4321, r = 1234, thens - r = 43215678. 0.01| 0.4038 123456 0.3251 654321

We carry out the sequence of experiments to explore the || 0.05]| 0.7364 | 213456 0.6369 654321
optimal and worst chunk selection policies for= 6,7 0.07|] 0.7809 | 312456 0.6982 654321
ands under different server’s uploading limjt. Table 2- 0.09) 0.8089 | 412356 | 0.7411 654321

4 depict the asymptotic probability of playback continuity || 9-11|| 0.8287 | 421356 || 0.7730 654321

m(n) for the optimal policies as well as the worst chunk 0.15]] 0.8556 | 521346 0.8131 365421
selection policy. 0.18| 0.8692 531246 0.8326 265431

0.19|| 0.8731 631245 0.8373 146532
0.25|| 0.8904 641235 0.8587 136542
0.27| 0.8946 642135 0.8641 125643

Il f [ opt. cont.|opt. policy [ worst cont.| worst policy |

0.04)| 0.4076 | 1234 0.3699 4321 0.33|] 0.0037 | 652134 || 0.8768 124653
0.19)) 07393 | 2134 0.7169 4321 0.38]| 0.0092 | 653124 || 0.8851 124653
0.26]] 0.7831 | 3124 0.7688 2431 0.47|| 09153 | 653214 | 0.8968 123564

0.32]| 0.8080 | 4123 0.7964 1432 0.49] 09162 | 654213 | 0.8990 123564
0.39] 08295 | 4213 0.8192 1342 0.61| 0.9201 | 654312 || 0.9114 123465
0.50]| 0.8522 | 4312 0.8454 1243 0.06] 0.0684 | 654321 || 09684 | 123456
095 0.9580 | 4321 0.9588 1234

Table 4: Optimal and worst policy for = 8
Table 2: Optimal and worst policy for = 6 P policy

Observation 2 As the initial fractionf increases, the op-

| f [lopt. cont.| opt. policy || worst cont. | worst policy || timal policy becomes more greedier while the worst pol-

0.02| 0.4050 12345 0.3466 54321 icy becomes less greedybservation 2 is intuitive because
0.10|| 0.7397 21345 0.6833 54321 when the server has a high upload capacity (or high value of
0.14|| 0.7843 31245 0.7445 54321 f), chunk scarcity is rare and so the chunk selection policy
0.17)] 0.8064 | 41235 0.7747 35421 should download those chunks which have earliest playback
0.21|| 0.8281 42135 0.8019 25431 deadlines.
0.29|| 0.8563 52134 0.8349 13542
0.35]] 0.8699 53124 0.8508 12543 Observation 3 The optimal policyw for buffer sizen that
0.40]| 0.8779 53214 0.8612 12543 reaches the playback continuity sfthas the forms - r for
0.41) 0.8793 4123 0.8631 12453 sufficiently largen. Heres is a chunk selection policy which
8"512 g'gggg 2323 8'2223 gggj dgpends_ omr but is independent af, andr is the R_arest

- - - First policy of lengthl,, — Is. Observation 3 provides a
0.95|| 0.9608 54321 0.9608 12345

way to extend the optimal chunk selection policy for a small
buffer to the optimal policy for a larger buffer. For exam-
ple, the optimal policies that reach playback continuity of
m =0.81forn = 6,7,8 are 4123, 41235 and 412356 re-
spectively, and they share the same upper segment policy of
4123. Based on the Observation 3, the optimal chunk se-
lection policy that reaches the playback continuity of 0.81
for buffer length 11 should bé12356789. Again, the im-
portance of this observation is that it can help us to easily
determine the optimal chunk selection policy for a partic-
ular system configuration (e.ge,and f). In the following
section, we provide a computational efficient approach to
find the optimal/worst chunk selection policy for large

Table 3: Optimal and worst policy for = 7

Based on these experiments, we have the following ob-
servations:

Observation 1 The optimal chunk selection policy is\of
shaped. That is, for the optimal chunk selection policy, let
B(k) be the buffer cell which has the lowest priority, then
priority increases as the position moves away frétk).
Conversely, the worst chunk selection policy is.ethaped.
That is, for the worst policy, leB(k) be the buffer cell with
the highest priority, then priority decreases as the positi
moves away fronB (k). Table 2-4 illustrate Observation 1.
For example, from Table 4, wheh= 0.15 andn = 8, the 5. Segmentation Method

optimal chunk selection policy is '521346’, which is of

shape, while the worst chunk selection policy is '365421",  To find the optimal and worst policy, it is necessary for
which is of A-shape. The importance of this observation is s to computeC(s, f). However, for a given value of,
that it can restrict the search space for finding the optimal the number of states in the DDIJMP modeRis 2, there-
policy from (n—2)! to 22, fore, the large number of states in the DDIJMP framework



is still computationally expensive. In here , we present the buffer H with the initial fractionp;, and the buffer con-
segmentation method which is computationally efficient to tinuity is py = C(sm,pr). Sincels,,ls, < ls,, the
solve and gives a very good approximationd¢s, f). In state space cardinality of the corresponding DDIJMP mod-
essence, the segmentation method is a divide-and-conquegls of the lower and higher buffer is much smaller than the

approach to estimaté(s, f). original problem, thereforeyy is much easier to compute
thanps = C(sg, f). We can summarize the segmentation
5.1. Segmentation Approach method with the following proposition:

) ) ~ Proposition 1 Let s andr be two priority-based chunk selec-
We assume a buffer using the chunk selection poliey  tjon policies, therC(s - r, f) = C(s, C(r, f)).

can be split into two segments so that any priority-based

policy in the lower segment has a higher downloading pri-  Figure 4 compares the performance measure based on
ority than any cell in the higher segment. We denote the (1) the segmentation method, (2) simulation and (3) the
lower segment by, and the higher segment 3y. For con- stochastic model in [15]. The horizontal axes are the buffer
venience, we add one hypothetic cell at the endl tf hold positions from; = 1 to n. The vertical axes are the proba-
the piece shifted out of and another at the beginning &f bility that B(7) is filled, or(i). Figure 4a shows the result
to hold the piece to be shifted int. After adding these  for the Rarest First Policy on a buffer with size= 14. To
hypothetic cells, botti and L has the similar structure as apply the segment model, we split the buffer into two seg-
a video staging buffer. In fact, as we will show later, we can ments of size 8, both using the Rarest First policy. There
model them as separate buffers by the DDJMP model. Letare three curves which correspond to the simulation, the
sw, s1, be the chunk selection policies & and L respec- ~ segment model and stochastic model in [15] respectively.
tively, then we havep = sy - s;. For example, the buffer ~ Figure 4b shows the result for an ad-hoc piece selection
of sizen = 10 shown in Figure 3 using policy3215678 policy (3,1,6,4,2,5,11,7,12,9, 10, 8) on a buffer of size
can be split into two buffersl andL both of size 6 (Figure 7 = 14. To apply the segment model, again we split it
3). The lower segment uses policys;, = 1234 and the into two buffers of size 8. The lower segment uses policy

higher segmeni/ uses policys; = 4321. 516342 while the higher one uses poliéy6425. There are
two curves which correspond to the simulation and the seg-
buffer H buffer L mentation method respectively. From these two figures, we
PH T pL f can see that the segmentation method is efficient and it pro-
- 47 -«—— vides more accurate results than the stochastic model [15].
6 54321 6 54 321
Figure 3: Splitting the buffer of size = 10. ! ! -
o Simulation o8 Simulation—__
To model each segment separately, we have to fully ac- « 3
count their mutual influence. Since cells inhave higher 5 % segment Model 5 0°
priorities than cells inff, H can never take away the down- ¢ o Stochastic| o
loading bandwidth frond, thus the activities in thél have E Model |
no effectonL. Therefore, we can separditdérom the whole 02 02
buffer and model it accurately using DDJMP. The continu-
Ity Of bUﬁer L iS pL = C(SL’ f) GO Busffer Posilionl? OO Bu5ffer Positionli0
Now we look at the higher segmeHAt The lower buffer (a) Rarest First (b) An Ad-hoc chunk selection

L can affectH in two aspects. First, it loads uf(2)

with probabilityp,, at the beginning of each time slot. Sec-  Figure 4: Evaluation for the Segment Moda{ = 10000,
ondly, L, with higher priority, preempts certain download- ¢ — .01, n = 14.

ing probability fromH (2) to H(ls,, + 1). If we assume

the correlation betwee#/ and L is small, the download

probability took away byl is justpr, which is the proba- ] ]

bility that downloading happens ih in a time slot. These 6. Adaptive Chunk Selection

two effects can also be fully accounted for by replacing

with the hypothetidd (1) with downloading probability, In the previous section, we show that the optimal chunk
in each time slot. Now we can concentrate on the analy-selection policy depends on the server’'s upload capacity,
sis for cells inH. We can take the whole buffé® as the which is represented by = J\% as well as the buffer size



n. Since the number of peers can be time varying, which 14. update peér of its N, by excluding pee;
implies that the optimal chunk selection can change also,15. } /* end if for normal peer departure */
therefore, we need an efficient protocol so the P2P stream-16. if (msg == abnormal departure of pegr{

ing system can update the optimal chunk selection policyto17. M——;

all peers. 18. for (each peeb wherea € N})
19. update peérits N, by excluding peeu;
6.1. Estimate number of viewing peersM 20. }/*end for abnormal peer departure */

21. }/*end while */

Let us first consider how to estimald, the number of
peers of the video streaming session, in a distributed fash-
ion. The value ofM will increase whenever there is any Pseudo Code for peew.:
new peer arrival, and will decrease whenever there is anyl. Upon joining the systerfi
peer departure. Note the there are two cases for a depar2. msg = waitfor_messagdrom_tracker;
ture: anormaldeparture wherein a peer decides to leave the 3. ID = extractID (msg);
system, or ambnormaldeparture wherein a peer leaves the 4. N, = extractneighborhoodset (msg);
P2P streaming session due the software or network failure. 5. for (each peeb € NV,) {

For the arrival event, a peer usually contactsttheker 6. periodically send keep-alive message to peer
so as to obtain the IP addresses of peers which are viewing'. } /* end for */
the same video session. Therefore, the tracker can updat8.  } /* end for newly join peer */
the value ofM whenever there is a new peer arrival. For
normal departure, a peer usually informs the tracker so the9.
tracker can update the value df. However, the tracker  10.
cannot account for those peers which leave the P2P system 1.
due to abnormal departure. One can overcome this problem
by using the distributed hash table (DHT). In particular, a 12. if (no keep-alive message from pégr
tracker uses the IP address (or any unique ID) of a peer andl3.  send message to tracker to indicate the
assigns a DHT value to a peer upon its arrival. Given these abnormal departure &f
DHT values, the tracker can organize peers in a logical ring
(similar to Chord [13]) and each peer has a unique position
in this logical structure. For each peer, saythe tracker
can assign a set of neighboring pe#fsfor peera to han-
dle. All peers in\, need to periodically send keep-alive
messages to peer If peera does not receive a keep-alive
message from a given neighboring peer, pe®iill inform
the tracker so the tracker can update the valug/ofNote
that the above procedure is very lightweight and can be car-
ried out in a fully distributed fashion. The pseudo-codes fo
the tracker and peers in estimatinfj are listed below.

if (receive message from track to exclude pgér
remove from N,;
disable sending keep-alive message to pger

6.2. Updating the optimal Chunk Selection Policy

The next task is how to inform all peers about the new
optimal chunk selection policy. From the above discussion,
the system has an estimate bf, which implies that we
now have an estimate ¢f = C'/(Mr). Given the value of
f and the peer’s buffer size, the system can easily look
up the optimal chunk selection policy, which we denote as
s*. Note that the optimal chunk selection policy for dif-
ferent values off andn can be pre-computed offline. As

Pseudo Code for Tracker:

1. while(true){ we discussed in Section 4 and 5, one can use the DDJMP
2. msg = waitfor_.messagdrom_peers(); framework and the segmentation method to efficiently ob-
3. if (msg == arrival of a new peer) { tain the optimal chunk selectiosf.

4, M4+, To efficiently inform all peers about the latest chunk se-
5. Compute the DHT’s ID for this new peer lections*. We consider the following approach: the stream-
6. Compute the neighborhodd, ; ing server will send the new chunk selectigh together

7. Send ID andV, to peera; will a timestampt, to a fractionf of peers. When a peer,

8. for (each peeb € N,) say a, receives this update message, it can compare with
9. update peeér of its V;, by including peer; its current chunk selection policy and the associated times
10 } /*endif for new peer arrival */ tamp. If the timestamp of the new message is larger than
11. if (msg == departure of a normal pegr{ the timestamp of its current chunk selection, then the peer
12. M——; will use the received*, and then relay this update message
13. for (each peebwherea € N,) to all its neighboring peers iV, . Else, peet will suppress



relaying the new message to its neighbors. In essence, this 1
is a control gossip protocoto broadcast the latest chunk
selections* to all peers.

Let us analyze the time it takes to relay the new chunk
selections* to all peers. Assume peers learn about the new
policy s* via gossip and peers receive gossips at a rate of 1
per time slot. If the gossip contains a policy with a newer
time stamp, then the peer will switch to this policy. Let
the serve pushes out the new chunk selection palicto
f fraction of peers at timé = 0. Letz(t) be the fraction
of peers using the new policy* at timet. Then on aver-
age, peers send outt)M gossips altogether. Since there
arel — x(t) fraction of peers using the old chunk selection
policy and the receiver is randomly selected, each gossip o 2 o . w
will changel — z(t) peers on average. So in this current Buffer Length
time unit, there will bex(¢)M (1 — x(t)) peers, or fraction
z(t)(1 — z(t)), switching to the new policg*. Thus we
have:

Optimal
Greedy

Random

Average playback continuity
o
o)
I

Figure 5: Comparison of five chunk selection policies.
dx

i x(t)(1 — x(t)). o . _ _ .
playback continuity at different time points. Before time
Solving the above equation, we have: slot 2000, all peers use the rarest first chunk selection pol-
icy. Then the system switches to the optimal pob&y 246
=—— wherer=In(f"'=1). (7) at timet = 2000. Figure 6b magnifies around the switch-
L4et=7 ing point. We see that the system adapts to the new policy
within 10 time slots only. This shows the effectiveness and
how quick the system can relay the optimal chunk selection
to all M peers.

t—T1

a(t)

Herer is the time needed for half of all peers to receive
the update. By Equation (7), whehis very small and: is
very close to one, the time needed for the update to reach
fraction of users is

[N

X
11—z
In the following, we carry out a set of experiments to
guantify the merits of our proposed algorithms.
Experiment 1: Performance comparison of different
chunk selection policies:In Figure 5, we compare the per-
formance of different chunk selection policies under diffe
ent buffer lengths. The horizontal axis is the buffer length
(n) and the vertical axis is the average playback continuity =~ ™ timesit % B0 oot
(w(n)). There are five curves correspond to the rarest first, (@) (b)
random, greedy, the optimal and the worst chunk selection
policies at each system configuration. In this experiment, Figure 6: Policy switching delay, = 8.
there are 5000 peers and the initial fractipn= 0.0002.
We can see that there is a big performance gap between th&xperiment 3: Adaptiveness of different chunk selection
optimal and the worst policy. We also notice that the per- policies: In Figure 7, we show the dynamics of different
formance of the greedy policy is very close to that of the policies in a P2P live streaming system where the number
worst policy at all buffer lengths. This indicates that ther of peersM changes with time. The horizontal axis is the
is a need for peers to collaborate and not to focus purely ontime slot and the vertical axis is the average playback eonti
its local performance measure. nuity. In this experiment, a new peer joins the system every
Experiment 2: Effectiveness of Adaptive Chunk Selec-  two time slots and the server uploads is fixe¢fat 1/M.
tion: In this experiment, we want to see the effectiveness of Initially, the system had/ = 100 peers. We simulate this
the proposed adaptive algorithms in subsection 6.1 and 6.2P2P system for 5000 time slots so the peer nunilden-
We consider a P2P live streaming system with= 1000, creases steadily from 100 to 2600 aficddecreases from
n = 8 and f = 0.18. Figure 6a illustrates the average 0.01 to 0.0004. The buffer length is set td1. There are
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three curves which are for non-adaptive, adaptive and theclass of chunk selection policies and derive optimalityctr
rarest first selection policy respectively. The non-ad&pti ture.

policy is the optimal policy at time¢ = 0 and it remains to DDJMP is discussed in [6] and has been applied to
use this policy even when the number of peers is changing.P2P systems [7] to model BitTorrent file distribution sys-
The adaptive policy is the optimal selection policyeaich tems. We apply this methodology to P2P streaming sys-
time slot We can see that a¥ increases and decreases, tems which has different chunk selection structures. There
the average playback continuity of the non-adaptive policy are some existing work which discuss various chunk selec-
keeps deteriorating while the adaptive policy and the tares tion policies. In [8], authors notice that chunk scarcitglan
first policy remain relative stable. We also see that the adap urgency are two important factors. They consider a class of
tive optimal policy has a significant performance gain over policies whose chunk priority is decided by a weighting fac-

the other two policies.

Adaptive

N

Average playback continuity

0.85
/ Rarest First
0.8 K Non-adaptive
0.75 I
oYL PAFEIE IS PP IR B
0 1000 2000 3000 4000 5000
Time Slot

Figure 7: Dynamics of adaptive policies.

7. Related Work

There are number of recent work on P2P live streaming

tion that mixes these two factors. They also show via sim-
ulation that their optimal policy also exhibits theshaped
structure while we use analytical approach to explore alarg
design space and derive optimal/worst structure.

8. Conclusion

In this paper, we provide an asymptotically exact ana-
lytical framework to analyze a large family of chunk se-
lection policies for data-driver P2P streaming systems. We
study the large design space of priority-based chunk selec-
tion policies observe some interesting properties of the op
timal and worst policy. In particular, the optimal policyas
Vv-shaped and becomes more greedy as the upload capacity
of the server increases. For a given continual playback-prob
ability, the structure of the optimal policy is also fixed as a
concatenation of a policy independent of buffer size and the
rarest First policy. This work provides some insight on the
properties of the optimal policies and it allows streaming
service providers to tradeoff between playback continuity
and operating cost of deploying the service.
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