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Abstract 

 
Erasure coding is a technique for achieving high 
availability and reliability in storage and communication 
systems. In this paper, we revisit the analysis of erasure 
code replication and point out some situations when 
whole-file replication is preferred. The switchover point 
(from preferring whole-file replication to erasure code 
replication) is studied, and characterized using 
asymptotic analysis. We also discuss the additional 
considerations in building erasure code replication 
systems. 
 
1 Introduction 
 
The tremendous growth in compute power, storage and 
communication bandwidth in personal computers and 
devices have led to proposals for building “serverless” 
systems to more economically provide traditional services. 
For example, [1] proposed a serverless file system; [2] 
and [3] proposed a serverless video streaming system; [4] 
proposed a distributed secure information dispersal 
system. Such systems may have varying degree of 
decentralization in management, thus can be considered 
either as clusters or peer-to-peer systems depending on 
where they situate in the spectrum. 

At some level of abstraction, all serverless systems 
offer a storage service. Therefore, a very important issue 
is data availability. Since no component is 100% reliable, 
we cannot have 100% availability; but we can achieve 
very high availability by replication. Normally, our notion 
of replication is redundancy by creating extra copies. It is 
a simple trade-off of storage overhead and availability. If 
you create S copies of a file, you increase the storage 
overhead by S, but reduce the probability that none of the 
copies are available (which you can calculate based on 
some assumptions on the component failure model). We 
will refer to this as whole-file replication. 

It has been known for sometime that erasure coding 
can be used to achieve significantly higher availability [5]. 
In this case, the file is divided into b (equal size) blocks. 
Erasure coding is then applied to the b blocks1, producing 

                                                 
1 For the purpose of this discussion, we do not need to know exactly 
how erasure coding is done and why it works. Many papers describe the 
details, e.g. [5]. 

c > b blocks (of same size as before). We can then 
recover the original file from any b out of the c encoded 
blocks. The storage overhead in this case is c/b. The file 
availability can again be computed based on a suitable 
model for component reliability [6], [7], [8]. The analyses 
show that file availability can be significantly higher. We 
refer to this as erasure code replication, or sometimes 
called block replication.  

In this paper, we report some additional analyses on 
erasure code replication. First, we note that erasure code 
replication is not always preferable to whole-file 
replication. This situation occurs when the component 
availability is low relative to some threshold (determined 
by the storage overhead). This result is relevant, 
particularly for some peer-to-peer systems where the 
average peer availability may be low.  Secondly, we note 
that once the threshold is crossed so that we prefer 
erasure code replication, the optimal way is to do erasure 
code replication using as many blocks as possible. In 
other words, there is a very sharp transition from 
preferring to whole-file replication to preferring to 
replicate with many blocks. This sharp transition is 
characterized analytically, using asymptotic analysis. 
Lastly, we discuss how to decide whether to use whole-
file or erasure code replication in practice, and if erasure 
code replication, how to decide the number of blocks (b) 
to use. We argue that there is always some cost associated 
with using erasure code replication, and this cost 
increases more than linearly with b. At some point, this 
cost becomes overwhelming in comparison to the gain in 
availability. So erasure code replication with large b is 
unlikely to be profitable. Furthermore, if the peer 
availability is not accurately known and can be below 
certain threshold, then the expected gain in file 
availability may completely disappear. 

The paper is organized as follows. In section 2, we 
review the availability analysis of whole-file replication 
versus erasure code replication. In section 3, we discuss 
how the effectiveness of erasure code replication varies 
with different parameters and under what situations 
whole-file replication is preferable.   We discuss  the cost 
of erasure code replication and how to choose the right 
number (of blocks) in section 4. Finally we conclude the 
paper and discuss future works in section 5.  
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2 Review Availability Analysis 
 
When a file is replicated by either whole-file replication 
or erasure code replication, we create replicas of the 
original data and place them on different components 
(peers). In a RAID system [5] or a computer cluster, the 
availability of each component is modeled by its 
reliability and the time to repair and replace faulty 
components. For a peer-to-peer system, the availability of 
a peer depends on how often the peer is on-line versus 
off-line. In either case, we will characterize the 
availability of a peer by a simple parameter, µ, known as 
peer availability. For convenience and tractability, we are 
assuming all peers have the same peer availabilities; their 
availabilities are independent of each other; and the single 
parameter peer availability incorporates possibly multiple 
sub-components, such as storage and communication 
components. 

Another key parameter is the storage overhead S, 
sometimes referred as the stretch factor. For whole-file 
replication, this is simply the number of copies. For 
erasure code replication, this is the ratio of number of 
erasure-coded blocks to the original number of blocks, 
c/b. 
 

TABLE I: Parameters used in erasure code replication 
 

Parameter Description 
µ Peer availability 

A, Ab, Aw File availability 
b Number of blocks a file is divided into 
S Storage overhead or stretch factor 

c = S*b Number of blocks after erasure coding 
 
 
2.1 File availability using whole-file replication 
 
Assume that a file is replicated S copies and placed at  S 
peers. Since the peers are independent to each other, and 
any 1 out of the S peers is enough to recover the whole 
file, the resulting file availability Aw is:  
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2.2 Erasure code replication 
 
If a file is divided into b blocks, we need to have b blocks 
to completely recover the whole file. In erasure code 

replication with storage overhead of S, each file block is 
replicated S times. Therefore we have S*b number of 
blocks in the system. 

Erasure code makes use of the dependencies 
between the file blocks to enhance the availability. These 
S*b blocks are dependent of each other, and we need any 
b out of these S*b blocks to recover the original file. 
Therefore, the availability of a file Ab using erasure code 
replication is [7]: 
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Notice that when b = 1, Ab = Aw, i.e. whole-file 

replication. Therefore unless otherwise specified, we 
denote file availability as simply by A. Moreover, we 
assume that the number of peers in the system is large 
compared with the number of erasure-coded blocks S*b. 
With this assumption, each block is allocated to one peer 
and therefore each block is independent to each other. 
 
3 Properties of erasure code replication  
 
Based on Equations 1 and 2, it is straightforward to 
compare whole-file replication and erasure code 
replication with the same storage overhead. For example, 
plugging S = 2, µ = 0.8 in equation 1 gives A = 0.96. 
Using equation 2 with b = 2 gives A = 0.9728. Therefore 
erasure code replication performs better. 

From equation 2, we see that erasure code 
replication benefits (in comparison to whole-file 
replication) from  the combinatorial effects. For the same 
storage cost, whole-file replication requires 1 out of S 
peers while erasure code requires b out of S*b peers. By 
examining the corresponding combinatorial term for the 
two cases, we see SbCb is much larger than SC1 as b 
increases. In other words, it is easier to have b of S*b 
peers available than 1 out of S peers. 

However, again from equation 2, we see another 
term, µb(1-µ)Sb-b, that works against erasure code 
replication, because it multiplies together a larger number 
of quantities smaller than 1. The smaller the value of peer 
availability, the more erasure code replication is penalized. 
We call this the peer availability effect. Therefore, the 
benefit of erasure code, to a large extent, depends on 
which of the above two effects is more dominant – the 
combinatorial effects, or the peer availabilities effect. 

Figure 1 shows a plot of two factors, the 
combinatorial factor SbCb and the peer availability factor 
µb(1-µ)Sb-b. From the plot, we see that the two factors are 
running in opposite directions, and therefore the resultant 
which is the product of the two, SbCbµb(1-µ)Sb-b, depends 
on which factor is more dominant.  
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In particular, when peer availability is low, it seems 
that factor can be so dominant that erasure code 
replication would loose out to whole-file replication. 
Even though erasure code replication involves more 
summation terms, we expect that there are cases that 
erasure code replication perform worse than whole-file 
replication. 

 

 
Figure 1: A qualitative analysis of erasure code 

replication. 
 
3.1 Effect of peer availability 
 
Figure 2 is a plot of file availability A against the number 
of blocks b in the system, with different peer availabilities 
using equation 2. The storage overhead S is 2 for all cases. 

As notices in section 2.2, the replication strategy is 
whole-file replication when b = 1, and erasure code 
replication when b ≠ 1. From the result we see that when 
the peer availabilities are low (about 0.2 – 0.5), indeed, 
whole-file replication can be better than erasure code 
replication. This supports our earlier observation when 
we considered the two factors that contribute to the value 
of file availability. In fact, the advantage of erasure code 
becomes more apparent only when the peer availabilities 
are reasonably high (greater than 0.6). At these levels, the 
overall file availability approach to 1 as b increases.  

From Fig 2, we also note that A may not be always 
monotonic in b. For example, when peer availability is 
0.6, file availability (A) first decreases and then increases 
again as b increases. This implies that even erasure code 
replication beats whole-file replication, for certain values 
of b this may not be true. However, as b increase, file 
availability (A) seems to become monotonically 
increasing eventually2. 

                                                 
2 We will later prove this to be true. 

 
Figure 2: Effect of changing µ on A 
 
3.2 Effect of storage overhead 
 
The storage overhead S, which represents the storage 
constraint of the system, also affects the overall file 
availability. 

 
Figure 3: Effect of changing S on A 
 

Similar to the result in section 3.1, the performance 
of erasure code replication depends on the value of b. For 
example, in Fig 3, when the storage overhead S is 4, 
erasure code replication performs worse than whole file 
replication when b is small, although the situation 
reverses when b increases. 
Based on the discussion so far, an interesting question 
is — what are the optimal values of b for different system 
parameters?  
 
3.3 Optimal value of b 
 
From Fig 2 and 3, we observe that A is either 
monotonically increasing or monotonically decreasing for 
large values of b. This leads us to postulate that the 
optimal value of b (when optimizing file availability A) is 
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either 1 or infinity (or b as large as possible to exhaust all 
the peers in the system). The optimal b would equal to 1 
when peer availability is small relative to the storage 
overhead S; it would equal to infinity if peer availability 
is large relative to the storage overhead.  

 
Figure 4: Optimal value of b to achieve highest file 

availability 
 

Fig 4 plots the optimal value of b against µ to 
achieve highest file availability with different values of 
storage overhead S. We fixed the maximum value of b to 
be 100 in this plot.  

From Fig 4, we observe that there is a sharp 
threshold µ’ for each storage overhead S. When µ is 
greater than µ’, we use erasure code replication with 
maximum number of blocks (b=100) allowed. When µ is 
smaller than µ’, we use whole-file replication (b=1). For 
example, when S is equal to 2, µ’ is about 0.5. When S 
increases, this threshold becomes a smaller value. 

 
3.4 Analytical derivation 
 
We can compute this threshold by brute force. That is, for 
each value of S, we try different values of µ to see at what 
value of µ’ the optimal b transitions from 1 to 100 (in our 
example). Figure 5 plots the threshold µ’ for different 
values of S. The maximum number of blocks b for the file 
is 100. When S = 1 (no replication), we find that we 
should always use whole-file replication for all peer 
availability levels (notice that µ’ =1). When S increases, 
µ’ decreases, and it is more likely to prefer erasure code 
replication. In general, for values of (µ, S) in the region 
above the curve, erasure code replication is preferred; 
while for values of (µ, S) below the curve whole-file 
replication is preferred. 

 
Figure 5: Switching point µ’ for different values of S. 

 
In fact, we can analytically derive this dividing 

curve between where whole-file replication is preferred 
and erasure code replication is preferred.  Indeed, it is the 
function: 

S
1

>µ                         (3) 

In [9], the authors proved an asymptotic result in a 
related problem. They considered the use of erasure codes 
for maximizing the reliable transmission of data across a 
large number of (lossy) communication channels in 
parallel. They showed the following (rephrased using our 
notations) by using Chebysbev’s inequality: 
 
Proposition: Assume µ is the probability of packet loss, b 
is the number of blocks and S is the storage overhead of 
using erasure encoding. If µ > 1/S, then the probability of 
successful transmission tends to 1 as b tends to infinity. 
 
We reproduce the proof in the Appendix for both the 
asymptotic result when µ > 1/S as well as the inverse 
result when µ < 1/S.  In our case, “successful 
transmission” is replaced by “successful file retrieval” 
Note, this is an asymptotic result that states what happens 
when b is large. When b is small, the file availability 
curve may not be monotonic, as shown in Fig 2 and 3. 
Figure 5 shows the asymptotic theoretical bound, which is 
very close to the numerical analysis. 
 This proposition actually points out the power of erasure 
coding. Namely, if we use enough redundancy so that the 
expected amount of retrievable data is no smaller than the 
size of the original data (S*µ>1), then we can achieve 
close to perfect availability by using a large number of 
blocks, b. When S*µ=1, we can only achieve file 
availability A=0.5, asymptotically for large b [9]. When 
S*µ<1, erasure coding becomes counter-productive for 
large b, since it asymptotically leads to zero file 
availability. 
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3.5 Discussion 
 
First, we comment on the relevance of our result. 
Normally, we build systems with high availability 
components. This would certainly be the case for RAID 
and computing clusters. In a decentralized peer-to-peer 
system, however, it is not entirely unrealistic for the 
average peer availability to be low. We give some 
plausible numerical examples below. 
 
RAID: Assume that the backup hard disks are 
independent to each other, each with a servicing 
availability of 0.7. By formula 1, using whole-file 
replication with storage overhead of 3 yields an 
availability of 0.9730. By formula 2, using erasure code 
replication with the same storage overhead and b = 5 
yields a file availability of 0.9993. Thus for a highly 
reliable system, erasure code helps improve system 
availability. 
 
P2P: Assume that each peer is only occasionally online, 
and each has availability of 0.1. By formula 1, if we have 
10 peers to do whole-file replication, then file availability 
is 0.6513. Using erasure code replication with b = 10 with 
the same storage overhead yields 100 blocks in the 
system. This yields a file availability of 0.5487. In this 
case, whole-file replication is better. 
 

Secondly, we observe that the result in this section is 
telling us something rather unsatisfactory. Since there is a 
sharp transition from preferring to whole-file replication 
to preferring to replicate with many blocks, the decision 
for using erasure code replication system is sensitive to 
system parameters. In practice, however, various cost 
factors would cause us to consider smaller values of b for 
erasure code replication, or whole file replication, as we 
argue in the next section. 
 
4 Additional considerations in choosing 

erasure code replication 
 
4.1 Cost of erasure code replication 
 
Systems gain from erasure code replication because the 
combinatorial effect. From section 3, we see erasure code 
replication will achieve near 100% file availability when 
the number of blocks b is large enough. However, after 
dividing a file into blocks, cost is involved in reassembly 
the file. Moreover, if we are downloading real time video 
data, this reassembly may require real-time scheduling of 
multiple incoming streams of data. Authors in [10] 
discuss real time decoding cost when using erasure code. 
It is therefore natural to associate a cost function that is 
monotonically increasing with the number of blocks b. 

Let us define a function C(b) as the cost function for 
the overhead of using erasure code replication. We 
assume the difficulty of scheduling the re-assembly 
increases more than linearly with the number of blocks b. 
When b = 1, the replication scheme is whole-file 
replication, and the cost is minimal. Based on these 
assumptions, a simple cost function for C(b) is:  
 

( ) αα  somefor              )1()1( 22 −=−∝ bbbC  
 
Given the cost function, we have two considerations 

when selecting a value for b. The problem is how to 
maximize the first objective function – file availability 
and minimize the second objective function – the cost 
function. 
Figure 6 is the tradeoff curve for file availability A with 
the above cost function C(b) letting α=10-2. The number 
of blocks b is bounded to a maximum value of 100, with 
storage overhead S = 3. From section 3, we know that 
erasure code replication is preferred when S*µ>1. We 
plot the curves with different values of S*µ satisfying this 
criterion. 

 
Figure 6: Tradeoff curve for file availability versus 

erasure code replication cost 
 

The tradeoff curve defines the pareto optimal points 
of file availability with erasure code replication cost. At 
these pareto optimal points, the system cannot achieve 
higher file availability without increasing the erasure code 
replication cost. From the figure, we observe that as we 
increase the value of b, the incremental improvement in 
file availability decreases while the incremental increase 
in cost accelerates. For example, when S*µ = 1.2, file 
availability A grows faster than the replication cost C(b) 
when the file availability is less than 0.95. When the file 
availability A exceeds this level, the gain in file 
availability cannot follow the increase in replication cost.  
This phenomenon is more apparent when S*µ is larger. 
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This means that when it is profitable to do erasure 
code replication, it is impractical to achieve maximum 
possible availability gain due to the associated costs. 
 
4.2 Sensitivity to the system parameters 
 
The average peer availability µ and storage overhead S, 
may be hard to measure accurately3. How sensitive is the 
selection for b to variations of these system parameters? 

If it is virtually certain that S*µ > 1, then the choice 
of b can be based on the tradeoff between file availability 
and cost as discussed in the last subsection. Inaccurate 
estimation of the parameters µ and S would result in 
slightly different tradeoff points between these two 
metrics (all for S*µ > 1), which would not be a problem.  

On the other hand, if S*µ could either be greater 
than 1 or smaller than 1 due to small variations of S and µ, 
then the choice of b can become very sensitive to where 
the value of S*µ falls. If we selected a large value for b, 
trying to maximize file availability without knowing S*µ 
is actually less than 1, this could be quite counter-
productive. Imagine a system running with peer 
availability µ = 0.35 and storage overhead S = 3. Since 
S*µ > 1, we should use erasure code replication with as 
many blocks as possible (as the cost function allows). 

Now suppose µ can only be measured with ±10% 
accuracy, then µ can be anywhere in a range [µU, µL] with 
µU = 0.385 and µL = 0.315. Plugging µU, µL into equation 
2, we have the corresponding file availability curves, as 
shown in Fig 7. From the figure, we find that the 
difference between two curves (∆), increases with b. 
Furthermore, for most plausible distribution of µ, the 
expected value of file availability would decrease with b, 
starting from b=1!  This line of argument suggests that 
even if S*µ > 1 (for expected values of S and µ), the right 
decision may still be to select b=1 (whole-file replication) 
because this choice is more robust against measurement 
errors. This may be a plausible explanation for why 
erasure code replication has rarely been adopted by peer-
to-peer systems [11], [12] (which tend to have lower and 
unknown peer availability value than a computer or 
storage cluster). 

 

                                                 
3 This is especially the case in a peer-to-peer system where such 
parameters may be the aggregate of highly decentralized individual 
decisions by peers. 

 
Figure 7: Difference in file availability due to 

measurement uncertainty 
 
5 Conclusion and future works 
 
In this paper, we revisit the analysis for erasure code 
replication under different scenarios. Two key parameters 
that differentiate these different scenarios are: the peer 
availability level µ and the storage overhead S. Existing 
research all implicitly or explicitly assume that the system 
has high availability level, and therefore the use of 
erasure code is automatic. However, in this paper we 
showed that the benefit of erasure code replication 
actually depends on the peer availability level (relative to 
the storage overhead). If the peer availability level is low, 
whole-file replication might perform better and have less 
cost. 

When erasure code replication is used, we also 
discuss the problem of selecting the optimal b. We point 
out that while theoretically higher values of b achieve 
higher availability, in practice smaller values of b are 
chosen due to re-assembly and scheduling costs. When 
systems parameters (µ and S) cannot be accurately 
determined, the conservative choice of using whole file 
replication is often the right decision. 

There are several interesting issues left for further 
studies. The analysis in this paper assumed that all the 
peers have the same availability level µ. The study of 
replication strategies and availability analyses when peers 
have different availability levels is an interesting direction. 
As pointed out by many others, the peer availability may 
be correlated to each other, or to time of day [13]. This is 
another direction for further studies. From a practical 
point of view, there are many system level issues in 
building a peer-to-peer system, in particular how to deal 
with continuous joining and departure of peers, how to 
estimate peer availability, choose peers to do replication, 
and locate replicas, and are there incentives for peers to 
cooperate to achieve common system level goals. These 
are all interesting issues for further study. 
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Appendix – Proof of asymptotic theoretical 
bound 
 
Case I: µ > 1/S 
From [9], define the loss probability of the file Lb as: 
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Let X be a binomial random variable having mean 
µ’=Sbµ and variance σ2 =Sbµ(1-µ). Then Lb is the sum 
probabilities of the random variable X with values 0 to b-
1. Similarly, Ab is the sum of probabilities of random 
variable X with values b to Sb. 
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Case II: µ < 1/S 
From I, Ab converge to 1 as µ > 1/S. We are going to 
prove Ab converge to 0 as µ < 1/S. 
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