
 1

Erasure Code Replication Revisited

W. K. Lin, D. M. Chiu, Y. B. Lee

Department of Information Engineering, The Chinese University of Hong Kong
{wklin3, dmchiu, yblee}@ie.cuhk.edu.hk

Abstract

Erasure coding is a technique for achieving high
availability and reliability in storage and communication
systems. In this paper, we revisit the analysis of erasure
code replication and point out some situations when
whole-file replication is preferred. The switchover point
(from preferring whole-file replication to erasure code
replication) is studied, and characterized using
asymptotic analysis. We also discuss the additional
considerations in building erasure code replication
systems.

1 Introduction

The tremendous growth in compute power, storage and
communication bandwidth in personal computers and
devices have led to proposals for building “serverless”
systems to more economically provide traditional services.
For example, [1] proposed a serverless file system; [2]
and [3] proposed a serverless video streaming system; [4]
proposed a distributed secure information dispersal
system. Such systems may have varying degree of
decentralization in management, thus can be considered
either as clusters or peer-to-peer systems depending on
where they situate in the spectrum.

At some level of abstraction, all serverless systems
offer a storage service. Therefore, a very important issue
is data availability. Since no component is 100% reliable,
we cannot have 100% availability; but we can achieve
very high availability by replication. Normally, our notion
of replication is redundancy by creating extra copies. It is
a simple trade-off of storage overhead and availability. If
you create S copies of a file, you increase the storage
overhead by S, but reduce the probability that none of the
copies are available (which you can calculate based on
some assumptions on the component failure model). We
will refer to this as whole-file replication.

It has been known for sometime that erasure coding
can be used to achieve significantly higher availability [5].
In this case, the file is divided into b (equal size) blocks.
Erasure coding is then applied to the b blocks1, producing

1 For the purpose of this discussion, we do not need to know exactly
how erasure coding is done and why it works. Many papers describe the
details, e.g. [5].

c > b blocks (of same size as before). We can then
recover the original file from any b out of the c encoded
blocks. The storage overhead in this case is c/b. The file
availability can again be computed based on a suitable
model for component reliability [6], [7], [8]. The analyses
show that file availability can be significantly higher. We
refer to this as erasure code replication, or sometimes
called block replication.

In this paper, we report some additional analyses on
erasure code replication. First, we note that erasure code
replication is not always preferable to whole-file
replication. This situation occurs when the component
availability is low relative to some threshold (determined
by the storage overhead). This result is relevant,
particularly for some peer-to-peer systems where the
average peer availability may be low. Secondly, we note
that once the threshold is crossed so that we prefer
erasure code replication, the optimal way is to do erasure
code replication using as many blocks as possible. In
other words, there is a very sharp transition from
preferring to whole-file replication to preferring to
replicate with many blocks. This sharp transition is
characterized analytically, using asymptotic analysis.
Lastly, we discuss how to decide whether to use whole-
file or erasure code replication in practice, and if erasure
code replication, how to decide the number of blocks (b)
to use. We argue that there is always some cost associated
with using erasure code replication, and this cost
increases more than linearly with b. At some point, this
cost becomes overwhelming in comparison to the gain in
availability. So erasure code replication with large b is
unlikely to be profitable. Furthermore, if the peer
availability is not accurately known and can be below
certain threshold, then the expected gain in file
availability may completely disappear.

The paper is organized as follows. In section 2, we
review the availability analysis of whole-file replication
versus erasure code replication. In section 3, we discuss
how the effectiveness of erasure code replication varies
with different parameters and under what situations
whole-file replication is preferable. We discuss the cost
of erasure code replication and how to choose the right
number (of blocks) in section 4. Finally we conclude the
paper and discuss future works in section 5.

 2

2 Review Availability Analysis

When a file is replicated by either whole-file replication
or erasure code replication, we create replicas of the
original data and place them on different components
(peers). In a RAID system [5] or a computer cluster, the
availability of each component is modeled by its
reliability and the time to repair and replace faulty
components. For a peer-to-peer system, the availability of
a peer depends on how often the peer is on-line versus
off-line. In either case, we will characterize the
availability of a peer by a simple parameter, µ, known as
peer availability. For convenience and tractability, we are
assuming all peers have the same peer availabilities; their
availabilities are independent of each other; and the single
parameter peer availability incorporates possibly multiple
sub-components, such as storage and communication
components.

Another key parameter is the storage overhead S,
sometimes referred as the stretch factor. For whole-file
replication, this is simply the number of copies. For
erasure code replication, this is the ratio of number of
erasure-coded blocks to the original number of blocks,
c/b.

TABLE I: Parameters used in erasure code replication

Parameter Description
µ Peer availability

A, Ab, Aw File availability
b Number of blocks a file is divided into
S Storage overhead or stretch factor

c = S*b Number of blocks after erasure coding

2.1 File availability using whole-file replication

Assume that a file is replicated S copies and placed at S
peers. Since the peers are independent to each other, and
any 1 out of the S peers is enough to recover the whole
file, the resulting file availability Aw is:

() () ()

() SSS

SS
w

S
S

SS
SA

−

−−

−⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

++−⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+−⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
=

µµ

µµµµ

1

...1
2

1
1

2211

() () (1) 1
1
∑
=

−−⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

S

i

iSi
w i

S
SA µµ

2.2 Erasure code replication

If a file is divided into b blocks, we need to have b blocks
to completely recover the whole file. In erasure code

replication with storage overhead of S, each file block is
replicated S times. Therefore we have S*b number of
blocks in the system.

Erasure code makes use of the dependencies
between the file blocks to enhance the availability. These
S*b blocks are dependent of each other, and we need any
b out of these S*b blocks to recover the original file.
Therefore, the availability of a file Ab using erasure code
replication is [7]:

() () (2) 1∑
=

−−⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

Sb

bi

iSbi
b i

Sb
bA µµ

Notice that when b = 1, Ab = Aw, i.e. whole-file

replication. Therefore unless otherwise specified, we
denote file availability as simply by A. Moreover, we
assume that the number of peers in the system is large
compared with the number of erasure-coded blocks S*b.
With this assumption, each block is allocated to one peer
and therefore each block is independent to each other.

3 Properties of erasure code replication

Based on Equations 1 and 2, it is straightforward to
compare whole-file replication and erasure code
replication with the same storage overhead. For example,
plugging S = 2, µ = 0.8 in equation 1 gives A = 0.96.
Using equation 2 with b = 2 gives A = 0.9728. Therefore
erasure code replication performs better.

From equation 2, we see that erasure code
replication benefits (in comparison to whole-file
replication) from the combinatorial effects. For the same
storage cost, whole-file replication requires 1 out of S
peers while erasure code requires b out of S*b peers. By
examining the corresponding combinatorial term for the
two cases, we see SbCb is much larger than SC1 as b
increases. In other words, it is easier to have b of S*b
peers available than 1 out of S peers.

However, again from equation 2, we see another
term, µb(1-µ)Sb-b, that works against erasure code
replication, because it multiplies together a larger number
of quantities smaller than 1. The smaller the value of peer
availability, the more erasure code replication is penalized.
We call this the peer availability effect. Therefore, the
benefit of erasure code, to a large extent, depends on
which of the above two effects is more dominant – the
combinatorial effects, or the peer availabilities effect.

Figure 1 shows a plot of two factors, the
combinatorial factor SbCb and the peer availability factor
µb(1-µ)Sb-b. From the plot, we see that the two factors are
running in opposite directions, and therefore the resultant
which is the product of the two, SbCbµb(1-µ)Sb-b, depends
on which factor is more dominant.

 3

In particular, when peer availability is low, it seems
that factor can be so dominant that erasure code
replication would loose out to whole-file replication.
Even though erasure code replication involves more
summation terms, we expect that there are cases that
erasure code replication perform worse than whole-file
replication.

Figure 1: A qualitative analysis of erasure code

replication.

3.1 Effect of peer availability

Figure 2 is a plot of file availability A against the number
of blocks b in the system, with different peer availabilities
using equation 2. The storage overhead S is 2 for all cases.

As notices in section 2.2, the replication strategy is
whole-file replication when b = 1, and erasure code
replication when b ≠ 1. From the result we see that when
the peer availabilities are low (about 0.2 – 0.5), indeed,
whole-file replication can be better than erasure code
replication. This supports our earlier observation when
we considered the two factors that contribute to the value
of file availability. In fact, the advantage of erasure code
becomes more apparent only when the peer availabilities
are reasonably high (greater than 0.6). At these levels, the
overall file availability approach to 1 as b increases.

From Fig 2, we also note that A may not be always
monotonic in b. For example, when peer availability is
0.6, file availability (A) first decreases and then increases
again as b increases. This implies that even erasure code
replication beats whole-file replication, for certain values
of b this may not be true. However, as b increase, file
availability (A) seems to become monotonically
increasing eventually2.

2 We will later prove this to be true.

Figure 2: Effect of changing µ on A

3.2 Effect of storage overhead

The storage overhead S, which represents the storage
constraint of the system, also affects the overall file
availability.

Figure 3: Effect of changing S on A

Similar to the result in section 3.1, the performance
of erasure code replication depends on the value of b. For
example, in Fig 3, when the storage overhead S is 4,
erasure code replication performs worse than whole file
replication when b is small, although the situation
reverses when b increases.
Based on the discussion so far, an interesting question
is — what are the optimal values of b for different system
parameters?

3.3 Optimal value of b

From Fig 2 and 3, we observe that A is either
monotonically increasing or monotonically decreasing for
large values of b. This leads us to postulate that the
optimal value of b (when optimizing file availability A) is

 4

either 1 or infinity (or b as large as possible to exhaust all
the peers in the system). The optimal b would equal to 1
when peer availability is small relative to the storage
overhead S; it would equal to infinity if peer availability
is large relative to the storage overhead.

Figure 4: Optimal value of b to achieve highest file

availability

Fig 4 plots the optimal value of b against µ to
achieve highest file availability with different values of
storage overhead S. We fixed the maximum value of b to
be 100 in this plot.

From Fig 4, we observe that there is a sharp
threshold µ’ for each storage overhead S. When µ is
greater than µ’, we use erasure code replication with
maximum number of blocks (b=100) allowed. When µ is
smaller than µ’, we use whole-file replication (b=1). For
example, when S is equal to 2, µ’ is about 0.5. When S
increases, this threshold becomes a smaller value.

3.4 Analytical derivation

We can compute this threshold by brute force. That is, for
each value of S, we try different values of µ to see at what
value of µ’ the optimal b transitions from 1 to 100 (in our
example). Figure 5 plots the threshold µ’ for different
values of S. The maximum number of blocks b for the file
is 100. When S = 1 (no replication), we find that we
should always use whole-file replication for all peer
availability levels (notice that µ’ =1). When S increases,
µ’ decreases, and it is more likely to prefer erasure code
replication. In general, for values of (µ, S) in the region
above the curve, erasure code replication is preferred;
while for values of (µ, S) below the curve whole-file
replication is preferred.

Figure 5: Switching point µ’ for different values of S.

In fact, we can analytically derive this dividing

curve between where whole-file replication is preferred
and erasure code replication is preferred. Indeed, it is the
function:

S
1

>µ (3)

In [9], the authors proved an asymptotic result in a
related problem. They considered the use of erasure codes
for maximizing the reliable transmission of data across a
large number of (lossy) communication channels in
parallel. They showed the following (rephrased using our
notations) by using Chebysbev’s inequality:

Proposition: Assume µ is the probability of packet loss, b
is the number of blocks and S is the storage overhead of
using erasure encoding. If µ > 1/S, then the probability of
successful transmission tends to 1 as b tends to infinity.

We reproduce the proof in the Appendix for both the
asymptotic result when µ > 1/S as well as the inverse
result when µ < 1/S. In our case, “successful
transmission” is replaced by “successful file retrieval”
Note, this is an asymptotic result that states what happens
when b is large. When b is small, the file availability
curve may not be monotonic, as shown in Fig 2 and 3.
Figure 5 shows the asymptotic theoretical bound, which is
very close to the numerical analysis.
 This proposition actually points out the power of erasure
coding. Namely, if we use enough redundancy so that the
expected amount of retrievable data is no smaller than the
size of the original data (S*µ>1), then we can achieve
close to perfect availability by using a large number of
blocks, b. When S*µ=1, we can only achieve file
availability A=0.5, asymptotically for large b [9]. When
S*µ<1, erasure coding becomes counter-productive for
large b, since it asymptotically leads to zero file
availability.

 5

3.5 Discussion

First, we comment on the relevance of our result.
Normally, we build systems with high availability
components. This would certainly be the case for RAID
and computing clusters. In a decentralized peer-to-peer
system, however, it is not entirely unrealistic for the
average peer availability to be low. We give some
plausible numerical examples below.

RAID: Assume that the backup hard disks are
independent to each other, each with a servicing
availability of 0.7. By formula 1, using whole-file
replication with storage overhead of 3 yields an
availability of 0.9730. By formula 2, using erasure code
replication with the same storage overhead and b = 5
yields a file availability of 0.9993. Thus for a highly
reliable system, erasure code helps improve system
availability.

P2P: Assume that each peer is only occasionally online,
and each has availability of 0.1. By formula 1, if we have
10 peers to do whole-file replication, then file availability
is 0.6513. Using erasure code replication with b = 10 with
the same storage overhead yields 100 blocks in the
system. This yields a file availability of 0.5487. In this
case, whole-file replication is better.

Secondly, we observe that the result in this section is
telling us something rather unsatisfactory. Since there is a
sharp transition from preferring to whole-file replication
to preferring to replicate with many blocks, the decision
for using erasure code replication system is sensitive to
system parameters. In practice, however, various cost
factors would cause us to consider smaller values of b for
erasure code replication, or whole file replication, as we
argue in the next section.

4 Additional considerations in choosing

erasure code replication

4.1 Cost of erasure code replication

Systems gain from erasure code replication because the
combinatorial effect. From section 3, we see erasure code
replication will achieve near 100% file availability when
the number of blocks b is large enough. However, after
dividing a file into blocks, cost is involved in reassembly
the file. Moreover, if we are downloading real time video
data, this reassembly may require real-time scheduling of
multiple incoming streams of data. Authors in [10]
discuss real time decoding cost when using erasure code.
It is therefore natural to associate a cost function that is
monotonically increasing with the number of blocks b.

Let us define a function C(b) as the cost function for
the overhead of using erasure code replication. We
assume the difficulty of scheduling the re-assembly
increases more than linearly with the number of blocks b.
When b = 1, the replication scheme is whole-file
replication, and the cost is minimal. Based on these
assumptions, a simple cost function for C(b) is:

() αα somefor)1()1(22 −=−∝ bbbC

Given the cost function, we have two considerations

when selecting a value for b. The problem is how to
maximize the first objective function – file availability
and minimize the second objective function – the cost
function.
Figure 6 is the tradeoff curve for file availability A with
the above cost function C(b) letting α=10-2. The number
of blocks b is bounded to a maximum value of 100, with
storage overhead S = 3. From section 3, we know that
erasure code replication is preferred when S*µ>1. We
plot the curves with different values of S*µ satisfying this
criterion.

Figure 6: Tradeoff curve for file availability versus

erasure code replication cost

The tradeoff curve defines the pareto optimal points
of file availability with erasure code replication cost. At
these pareto optimal points, the system cannot achieve
higher file availability without increasing the erasure code
replication cost. From the figure, we observe that as we
increase the value of b, the incremental improvement in
file availability decreases while the incremental increase
in cost accelerates. For example, when S*µ = 1.2, file
availability A grows faster than the replication cost C(b)
when the file availability is less than 0.95. When the file
availability A exceeds this level, the gain in file
availability cannot follow the increase in replication cost.
This phenomenon is more apparent when S*µ is larger.

 6

This means that when it is profitable to do erasure
code replication, it is impractical to achieve maximum
possible availability gain due to the associated costs.

4.2 Sensitivity to the system parameters

The average peer availability µ and storage overhead S,
may be hard to measure accurately3. How sensitive is the
selection for b to variations of these system parameters?

If it is virtually certain that S*µ > 1, then the choice
of b can be based on the tradeoff between file availability
and cost as discussed in the last subsection. Inaccurate
estimation of the parameters µ and S would result in
slightly different tradeoff points between these two
metrics (all for S*µ > 1), which would not be a problem.

On the other hand, if S*µ could either be greater
than 1 or smaller than 1 due to small variations of S and µ,
then the choice of b can become very sensitive to where
the value of S*µ falls. If we selected a large value for b,
trying to maximize file availability without knowing S*µ
is actually less than 1, this could be quite counter-
productive. Imagine a system running with peer
availability µ = 0.35 and storage overhead S = 3. Since
S*µ > 1, we should use erasure code replication with as
many blocks as possible (as the cost function allows).

Now suppose µ can only be measured with ±10%
accuracy, then µ can be anywhere in a range [µU, µL] with
µU = 0.385 and µL = 0.315. Plugging µU, µL into equation
2, we have the corresponding file availability curves, as
shown in Fig 7. From the figure, we find that the
difference between two curves (∆), increases with b.
Furthermore, for most plausible distribution of µ, the
expected value of file availability would decrease with b,
starting from b=1! This line of argument suggests that
even if S*µ > 1 (for expected values of S and µ), the right
decision may still be to select b=1 (whole-file replication)
because this choice is more robust against measurement
errors. This may be a plausible explanation for why
erasure code replication has rarely been adopted by peer-
to-peer systems [11], [12] (which tend to have lower and
unknown peer availability value than a computer or
storage cluster).

3 This is especially the case in a peer-to-peer system where such
parameters may be the aggregate of highly decentralized individual
decisions by peers.

Figure 7: Difference in file availability due to

measurement uncertainty

5 Conclusion and future works

In this paper, we revisit the analysis for erasure code
replication under different scenarios. Two key parameters
that differentiate these different scenarios are: the peer
availability level µ and the storage overhead S. Existing
research all implicitly or explicitly assume that the system
has high availability level, and therefore the use of
erasure code is automatic. However, in this paper we
showed that the benefit of erasure code replication
actually depends on the peer availability level (relative to
the storage overhead). If the peer availability level is low,
whole-file replication might perform better and have less
cost.

When erasure code replication is used, we also
discuss the problem of selecting the optimal b. We point
out that while theoretically higher values of b achieve
higher availability, in practice smaller values of b are
chosen due to re-assembly and scheduling costs. When
systems parameters (µ and S) cannot be accurately
determined, the conservative choice of using whole file
replication is often the right decision.

There are several interesting issues left for further
studies. The analysis in this paper assumed that all the
peers have the same availability level µ. The study of
replication strategies and availability analyses when peers
have different availability levels is an interesting direction.
As pointed out by many others, the peer availability may
be correlated to each other, or to time of day [13]. This is
another direction for further studies. From a practical
point of view, there are many system level issues in
building a peer-to-peer system, in particular how to deal
with continuous joining and departure of peers, how to
estimate peer availability, choose peers to do replication,
and locate replicas, and are there incentives for peers to
cooperate to achieve common system level goals. These
are all interesting issues for further study.

 7

Acknowledgements:
We thank Professor Soung Liew for an interesting
discussion that led us to his work on a related by different
problem. We also acknowledge the support from the
Areas of Excellence scheme established under the
University Grant Committee of the Hong Kong Special
Administrative Region, China (Project Number AoE/E-
01/99).

Appendix – Proof of asymptotic theoretical
bound

Case I: µ > 1/S
From [9], define the loss probability of the file Lb as:

()

1
where,

1
1

0

=+

−⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

−−

=
∑

bb

iSbb

i

i
b

LA

i
Sb

L µµ

Let X be a binomial random variable having mean
µ’=Sbµ and variance σ2 =Sbµ(1-µ). Then Lb is the sum
probabilities of the random variable X with values 0 to b-
1. Similarly, Ab is the sum of probabilities of random
variable X with values b to Sb.

()

S
bSbb

bXPb

bXP
bXPXPXP

i
Sb

L
iSbb

i

i
b

100' If

))'('()P(X
:Since

)(
)1(...)1()0(

1
1

0

>⇒>−⇒>−

−−≤=≤

≤=
−=++=+==

−⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

−−

=
∑

µµµ

µµ

µµ

∞→→

−+−

−
=

−+−

−
=

−+−
−

=

−+
≤−−≤

b
S

Sb

bSb
Sb

bSbSb
Sb

b
bP(X

 as0

)1()1(

)1(

)(1)1(

)1(
)()1(

)1(
)'(

))'('

,Inequality ChebysbevBy

2

2

2

22

2

µµµ

µµ

µµµ

µµ
µµµ

µµ
µσ

σµµ

∞→→

>

bA
S

b as1

1 if Therefore, µ

Case II: µ < 1/S
From I, Ab converge to 1 as µ > 1/S. We are going to
prove Ab converge to 0 as µ < 1/S.

()

µµµ

µµ

µµ

>⇒>−⇒>

−+≥=≥

≥=
=+++=+==

−⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

−

=
∑

S
Sbbb

bXPb

bXP
SbXPbXPbXP

i
Sb

A
iSbSb

bi

i
b

100'- If

))'('()P(X
:Since

)(
)(...)1()(

1

Similarly,

∞→→

<

∞→→

−+−

−
=

−+−

−
=

−+−
−

=

−+
≤−+≥

bA
S

b
S

Sb

Sbb
Sb

SbbSb
Sb
b

bP(X

b as0

1 if Therefore,

 as0

)1()1(

)1(

)(1)1(

)1(
)()1(

)1(
)'(

))'('

,InequalityChebysbevBy

2

2

2

22

2

µ

µµµ

µµ

µµµ

µµ
µµµ

µµ
µσ

σµµ

References

[1] Bolosky et al “Feasibility of a serverless distributed file

system deployed on an existing set of desktop PCs”,
Proceedings of Sigmetrics, 2000.

[2] Jack Y. B. Lee and W. T. Leng, "Study of a Server-less
Architecture for Video-on-Demand Applications," In
Proccedings of IEEE International Conference on
Multimedia and Expo., Lausanne, Switzerland, 26-29
August 2002, pp.233-236

[3] V. N. Padmanabhan, H. J. Wang, and P. A. Chou "Resilient
Peer-to-Peer Streaming", IEEE ICNP 2003

 8

[4] Michael O. Rabin. “Efficient dispersal of information for
security, load balancing and fault tolerance”. Journal of the
Association for Computing Machinery, 36(2):335--348,
April 1989

[5] Patterson, D., Gibson, G., and Katz, R. “The Case for
RAID: Redundant Arrays of Inexpensive Disks”, ACM
SIGMOD, May 1988

[6] H. Weatherspoon and J. Kubiatowicz. “Erasure coding vs.
replication: A quantitative comparison”. In Proceedings of
the First International Workshop on Peer-to-Peer Systems
(IPTPS 2002).

[7] R. Bhagwan, D. Moore, S. Savage, and G. M. Voelker.
“Replication strategies for highly available peer-to-peer
storage”. In Proceedings of FuDiCo: Future directions in
Distributed Computing, June 2002

[8] Charles Blake, Rodrigo Rodrigues, "High Availability,
Scalable Storage, Dynamic Peer Networks: Pick Two",
Proceedings of the 9th Workshop on Hot Topics in
Operating Systems (HotOS '03), Lihue (Kauai), Hawaii,
May 2003

[9] Tony T. Lee, Soung C. Liew, “Parallel Communications
for ATM Network Control and Management”, IEEE
Globecom 1993

[10] L. Rizzo, "Effective Erasure Codes for Reliable Computer
Communication Protocols", Computer Communication
Review, 27(2):24--36, April 1997

[11] Ian Clarke, Oskar Sandberg, Brandon Wiley, and Theodore
W. Hong. Freenet: A Distributed Anonymous Information
Storage and Retrieval System. In Proceedings of the ICSI
Workshop on Design Issues in Anonymity and
Unobservability, Berkeley, CA, 2000

[12] V. N. Padmanabhan and K. Sripanidkulchai, "The Case for
Cooperative Networking" Proceedings of the First
International Workshop on Peer-to-Peer Systems (IPTPS),
March 2002

[13] Ranjita Bhagwan, Stefan Savage, Geoffrey M. Voelker:
“Understanding Availability”. IPTPS 2003: 256-267

