
1

A Simple Model for A Generic Class of P2P
Streaming Algorithms

Yipeng Zhou, Dah Ming Chiu, Fellow, IEEE, and John CS Lui, Senior Member, IEEE

Abstract— P2P streaming tries to achieve scalability (like P2P
file distribution) and at the same time meet real-time playback
requirements. It is a challenging problem still not well under-
stood. In this paper, we describe a simple stochastic model that
can be used to compare different downloading strategies with
random peer selection.Based on this model, we study the trade-
offs between supported peer population, buffer size and playback
continuity. We first study two simple strategies: Rarest First and
Greedy. The former is a well-known strategy for P2P file sharing
that gives good scalability by trying to propagate the chunks of
a file to as many peers as quickly as possible. The latter is
an intuitively reasonable strategy to get urgent chunks first to
maximize playback continuity from a peer’s local perspective.
Yet in reality, both scalability and urgency should be taken care
of. With this insight, we propose a Mixed strategy that achieves
the best of both worlds. Furthermore, the Mixed Strategy comes
with an adaptive algorithm that can adapt it buffer setting to
dynamic peer population. We validate our analytical model with
simulation. Finally, we also discuss the modeling assumptions and
the model’s sensitivity to different parameters, and show that our
model is robust.

I. Introduction

Video streaming over the Internet is already a widely deployed
service. The engineering of video streaming from a server to a
single client is well studied and understood. This, however, is
not scalable to serve a large number of clients simultaneously.
In recent years, a clever solution has emerged - peer-to-
peer (P2P) video streaming, which works surprisingly well.
A number of commercial systems are in service today, such
as [1], [2].

The idea is very simple: let the peers, other users interested
in the same content, help the source of the content in its
distribution. The more peers are interested in the content,
the more helpers in distributing the content, so it becomes
scalable. The original mechanism is P2P file sharing. Each
peer obtains an entire file before this possession is known
by others. Other peers may then request for the file. This
mechanism is quite adequate for small files, such as a picture,
or an audio file. For a large file, be it video, software, or other
content, this mechanism can incur a large delay. It is like a
store-and-forward system without pipelining.

A new kind of P2P algorithm soon got developed, known
as P2P file downloading. The most well-known example is

Yipeng Zhou and Dah Ming Chiu are from the Department of
Information Engineering, whereas John Lui is from the Department
of Computer Science and Engineering of The Chinese University
of Hong Kong (email: {ypzhou6,dmchiu}@ie.cuhk.edu.hk) and
cslui@cse.cuhk.edu.hk).

BitTorrent [3]. In this case, the file is divided into a number
of chunks. In trying to download a file, a peer simultaneously
engages in downloading (or more precisely sharing) all the
chunks of that file. If there are N chunks in the file, one
can visualize the situation as N file sharing sessions carrying
on at the same time. The result is that all peers can become
fully engaged in file sharing all the time, and the delay in
propagating the whole file to all peers can be minimized. The
key is that there needs to be a good schedule of which peer is
to get which chunk from which other peer at each moment.

There are two main approaches to this scheduling problem:
structured and unstructured. In the first case, the basic idea is
to form K distribution trees, each is a spanning tree from the
source to all the peers. The chunks of the file are distributed
via different trees in a round-robin fashion. The amount of
service each peer provides is related to the total out-degree
it has in these spanning trees, and the timing of the service
depends on the peer’s position in different trees. The challenge
of the structured approach is to come up with the distribution
trees that fully utilize all the peers, which intuitively will
also minimize delay. The difficulty with this approach is how
to deal with peer churn, and how to get the peers provide
their information reliably for such centralized planning. In the
second case, there is no structure; peers just download from
each other based on local information of what is available and
what is needed. Besides selecting which chunks to download
(share), each peer must select which neighbor peer to exchange
with (known as peer selection) and how fast to request
and serve others (we call that load balancing). All these
mechanisms can be implemented as distributed algorithms,
as exemplified by BitTorrent [3] and several other systems
[1], [2]. Perhaps due to its simplicity (being distributed) and
robustness (to peer churn), the unstructured approach is very
popular in practice. It is quite surprising that the seemingly
rather chaotic unstructured approach works at all. So the
unstructured approach is also receiving a lot of attention from
the academic community [4]–[18].

P2P streaming can be thought off as a special case of P2P file
downloading. The focus of P2P streaming is no longer only
delay and throughput, but also the more stringent playback
performance. For this reason, some algorithms that are con-
sidered optimal for file downloading may not be optimal for
streaming1.

1This is the reason that some results in our paper are somewhat different
from the conclusions in other recent papers [5], [7], [16]. We will discuss this
point in more detail in the Related Works section.

2

In the study of P2P content distribution algorithms, whether it
is for file downloading or video streaming, practice is leading
theory. In practice, chunk selection, peer selection and load
balancing algorithms must all be considered and designed to
work together to achieve the best results. The methodology for
evaluation is often based on controlled network experiments,
such as PlanetLab, Emulab, or experimental deployment in
campus networks. Practical systems are usually designed to
be upgradable, so that new versions can be tested in real life
environments. In spite of the success of practice, there is still
great interest in theoretical models of these P2P distributed
algorithms that are able to provide the insights of why these
algorithms work; explain the design trade-offs; and provide a
way to understand the robustness, i.e., the sensitivity of these
algorithms to various system parameters.

In the theoretical models of P2P algorithms, it is usually
not possible to model all the aspects (chunk selection, peer
selection, and load balancing) at the same time. To focus on
one (or two) aspect only, it is possible to assume an abstract
setting in which only one problem is relevant. For example,
in studying chunk selection algorithms, we can assume peer
selection is random, and all peers have the same capacity so
that there is no need for load balancing. This is the approach
taken by [5], [6]. In [10], in order to focus on the load
balancing problem [10], it is assumed that all peers already
have all the content so that chunk selection is not needed.

The main results of the current paper are already published
in [9]. The Zhou-Chiu-Lui model in [9] models the buffer
state of peers; and by assuming homogeneous peers2, and by
making an approximation via an independence assumption 3,
it is possible to write down the probability of buffer occupancy
in terms of a set of differential equations. Hence the continuity,
or the playback performance, can be explicitly computed and
studied relative to various chunk selection algorithms and
system parameters. This analysis allows us to understand
the basic trade-offs in chunk selection, and propose a near-
optimal yet practical algorithm. In this paper, (1) to improve
the presentation, we re-organize and re-state the lemmas and
propositions; (2) we discuss the optimality of the proposed
algorithms, based on an upper bound; (3) we add a detailed
discussion of the contribution of these results by comparing it
to some recent and significant related works.

The organization of the paper is as follows. Section II is on
the basic probabilistic model; Section III goes into the details
of how to model different chunk selection strategies; Section
IV provides various numerical examples, solved by both the
discrete and the continuous version of our model, as well
as validated by simulation. Section VI describes application
of our protocol to real protocol design, while in section V
discusses the reasonableness of the assumptions in our model
and the conclusion is given in Section VII.

2All the peers are probabilistically the same.
3All the buffer positions can be considered independently.

n
 n-1
 k
 1

Sliding Window

n
 k+1
 2

Sliding Window

1

One time slot later

k

Playback

Playback

Fig. 1. Sliding Window Mechanism of the buffer B

II. Basic Model

We begin by defining notations and stating assumptions.

Let there be M peers in the network4. There is a single server
that pushes chunks of (video) content, in playback order, to the
M peers. New chunks are generated at the rate of one chunk
per time slot. If the server selects the one peer randomly (to
push a chunk) in each time slot, each peer would be receiving
new chunks at the rate of 1

M .

Each peer maintains a buffer B that can cache up to n chunks
received from the network. We refer the buffer positions
according to the age of the chunks stored: B(n) is reserved for
the chunk to be played back immediately; B(1) is used to store
the newest chunk that the server is distributing in the current
time slot. In other words, when the server is distributing chunk
t (at time t), if t ≥ n− 1 then chunk t− n + 1 is the chunk
being played back by that peer. After each time slot, the chunk
played back in the previous time slot is removed from B and
all other chunks are shifted up by 1. In other words, the buffer
acts as a sliding window into the stream of chunks distributed
by the server, as shown in Figure 1. Each buffer space is
initially empty, and gets filled by the P2P streaming protocol,
either from the server or from other peers. The goal is to
ensure B(n) is filled in as many time slots as possible, so as
to support the continuous video playback.

Let pk(i)[t] denote the probability that the ith buffer space,
B(i), of peer k is filled with the correct chunk at time t. We
assume this probability reaches a steady state for sufficiently
large t, namely pk(i)[t] = pk(i). We call pk(i) the buffer
occupancy probability of the kth peer5.

Let us first consider a simple case that the server is the
only means for distributing chunks to peers, then the buffer
occupancy distribution can be expressed as follows:

pk(1) = p(1) =
1
M

∀k, (1)

pk(i+1) = p(i+1) = p(i) i = 1, 2, . . . , n−1 ∀k. (2)

Eq. (1) reflects the odds for the local peer to be picked
by the server, while Eq. (2) reflects the fact that successful
downloading only occurs at the first location of the buffer

4As we will see later, if M is reasonably large then our results are
essentially independent of M , nor do they require M to be a constant.

5Note, the buffer occupancy probability is not a probability distribution of
i since it is not necessarily true that

∑
pk(i) = 1.

3

(from the server). The playback performance, given by p(n),
is equal to 1

M , would obviously be very poor for any M > 1.
In general, we refer to p(1) as the input rate from server,
observed at each peer. This input rate must be greater or equal
to 1

M . The server’s upload bandwidth to sustain an input rate
of p(1) is p(1)M . This shows the scalability problem when the
server is the only means of distributing the content. In the rest
of the paper, we assume p(1) = 1

M unless stated otherwise.

To improve playback performance, peers help each other when
asked. We model the unstructured P2P mechanism as a pull
process: each peer selects another peer in each time slot to try
to download a chunk not already in its local buffer. This P2P
downloading model has the following implications:

• A peer may be contacted by multiple other peers in
a single time slot. In this case, it is assumed that the
selected peer’s uploading capacity is large enough to
satisfy all the requests in the same time slot. If peers are
selected randomly, the probability that it will be selected
by k ≥ 0 peers is β(k), where

β(k) =
(

M − 1
k

)(
1

M − 1

)k (
M − 2
M − 1

)M−1−k

for k ≥ 0. The likelihood of being selected by many
other peers is low, e.g., when there are M = 100 peers,
the probability that it is selected by more than three peers
is only around 1.8%.

• If the selected peer has no useful chunk, the selecting
peer loses the chance to download anything in a time
slot. This simplifying assumption can help us to derive
closed-form expression6.

Furthermore, we assume homogeneous peers7, namely, all
peers use the same strategy to select other peers and chunks
to download at the same downloading rate. The implication is
that in the steady state, all peers have the same distribution p(i)
for the buffer occupancy, as in the server-only downloading
case above. In this paper, we only consider random peer
selection strategies. Intuitively and from previous results in
the literature, we know peer selection strategy is an important
factor when peers have different uplink bandwidth, or when the
paths to different peers have different bottleneck capacity. In
these scenarios, peers are non-homogeneous and asymmetric.
Once we assuming peers are homogeneous, however, it is
reasonable to adopt the random peer selection strategy to keep
the problem tractable.

Once a peer is selected, a chunk for downloading must also be
specified. The chunk selection policy can be represented by a
probability distribution q, where q(i) ≥ 0, gives the probability
that the chunk needed to fill B(i) is selected. Hence, Eq. (2)
becomes:

p(i + 1) = p(i) + q(i) i = 1, . . . , n− 1, (3)

6This type of assumption is also made in other P2P file sharing models
[15]

7This assumption is made in many similar work on the modeling of p2p
network, such as [5], [6], [17]. We make the same assumption so that the
problem is tractable.

with the boundary condition of p(1) = 1/M . For i > 0,
q(i) is expected to be greater than 0 since there is a non-
zero probability that a peer may be found to fill B(i) if it is
not already filled. This implies p(i) is an increasing function
of i, hence collaboration by peers improve the playback
performance as expected.

Consider a particular peer k, and assume it selected peer h
to download a chunk. The selection of a particular chunk to
download is based on the following events:

• WANT(k,i): B(i) of peer k is unfilled; we abbreviate this
event as W (k, i).

• HAVE(h,i): B(i) of peer h is filled; we abbreviate this
event as H(h, i).

• SELECT(h,k,i): Using the chunk selection strategy, peer
k cannot find a more preferred chunk than that of
B(i) that satisfies the WANT and HAVE conditions; we
abbreviated this event as S(h, k, i).

Therefore, we can express q(i) as:

q(i) = Pr[W (k, i) ∩H(h, i) ∩ S(h, k, i)]
= Pr[W (k, i)] Pr[H(h, i)|W (k, i)]×

Pr[S(h, k, i)|W (k, i) ∩H(h, i)]. (4)

The following assumptions help us to simplify Eq. (4):

• All peers are independent: the probability of the buffer
state at the same position for different peers, p(i), are the
same. Therefore, Pr[W (k, i)]= 1− p(i).

• There are a large enough number of peers so that knowing
the state of one peer does not significantly affect the
probability of the state at another peer. This implies that:

Pr[H(h, i)|W (k, i)] ≈ Pr[H(h, i)] = p(i).

• The chunks are independently distributed in the network.
The probability distribution for position i is not strongly
affected by the knowledge of the state at other positions.
This allows us to write the selection function as

s(i)=Pr[S(h, k, i)|W (k, i)∩H(h, i)]≈Pr[S(h, k, i)],

which is independent of the actual state at position i. As
we will show, this assumption is more accurate for some
chunk selection strategies than others.

Based on the above assumptions, Eq. (4) is:

q(i) ≈ [1−pk(i)] ph(i)s(i) = [1− p(i)] p(i)s(i). (5)

Since each of the terms in Eq. (5) is a probability (in particular
p(i) ≤ 1 and p(i)s(i) ≤ 1), Eq. (3) becomes:

p(i + 1) = p(i) + [1− p(i)]p(i)s(i) ≤ 1. (6)

The chunk selection strategy s(i), the focus of this study, is
discussed in the next section.

Each peer tries to download one chunk from another peer in
a time slot, which is reasonable for streaming8. Because of

8For a progressive downloading system, a peer may try to download faster
than that

4

this assumption, a peer’s chunk selection strategy, s(i), is a
probability distribution although s(i) may not sum up to 1
because there is always some probability that no useful chunk
can be downloaded. The choice of s(i) has a great effect on
playback continuity. To help understand what the best s(i) can
possibly achieve, we can relax the assumption, by allowing
each peer to fetch all useful chunks from the selected neighbor,
in each time slot. This is equivalent to letting s(i) = 1 for all
i. This unconstrained chunk selection strategy can be used to
derive an upper bound playback continuity achievable by any
s(i). After setting s(i) = 1, Eq. (6) becomes:

p(i + 1) = p(i) + p(i)(1− p(i)) (7)

The upper bound continuity is derived from the solution of
this equation, which will be used later to consider optimality
of chunk selection strategies.

Another quantity of interest is the number of time slots it
takes for a chunk to be distributed to all peers, which is a
lower bound for the buffer size n. Intuitively, we know this
lower bound must be greater than dlog2(M)e because in each
time slot, the number of peers possessing a particular chunk
can at most double from the previous time slot. Eq. 7 can
give us a tighter lower bound on the buffer size, taking into
consideration of the achieved playback continuity. This will
be discussed in detail in the next section.

III. Chunk Selection Strategies

The simple stochastic model in the previous section set the
stage for us to model and analyze different chunk selection
strategies. We begin by considering some familiar strategies.
The first one is the “Rarest First Strategy”, which is widely
adopted in P2P file distribution protocol BitTorrent [8], [17],
and P2P streaming protocol CoolStreaming [4]. The second
one is the “Greedy Strategy” (or the nearest deadline first
strategy), and lastly the mixed strategy, which is a combination
of the above two algorithms.

By intention, a peer using the Rarest First Strategy will select
a chunk which has the fewest number of copies in the system.
To describe the Rarest First Strategy from the perspective of
the buffer B = {B(n), B(n − 1), . . . , B(1)}, let us consider
a particular peer, say peer k. From Eq. (3), we know that p(i)
is an increasing function of i, therefore p(i+ 1) ≥ p(i) for
i=1, . . . , n−1. Since peers are homogeneous, this inequality
implies that the expected number of copies of chunk in B(i+
1) is greater than or equal to the expected number of copies of
chunk in B(i). Therefore, under the Rarest First Strategy, peer
k will first select B(1) to download if B(1) is not available
in k’s buffer. If chunk B(1) is already downloaded before or
B(1) is not available in its neighbor, peer k will select B(2)
to download if B(2) is not in k’s buffer and so on.

For the Greedy Strategy, peer k will select a chunk which
is closest to its playback deadline. From buffer B’s point of
view, B(n) is the closest to playback time, then B(n − 1)
is the next, and so on. Therefore, peer k will first try to
download B(n) if it is not available in k’s buffer. If the chunk

B(n) is already downloaded before or B(n) is not available
in k’s neighbor, the peer k will select B(n− 1) to download
if B(n−1) is not in k’s B and so on. Note that the Greedy
Strategy seems intuitively the best strategy for streaming at
the first sight. Through our analysis, we will show that while
from a single peer’s point of view Greedy may be the best for
playback, it is often too short-sighted from a system’s point
of view, when the peer population is large. Instead, Rarest
First is very effective in maximizing peer contribution as the
population grows, hence produces good system-wide playback
performance. On the other hand, the strength of Greedy is
that it takes less buffer space, incrementally, to achieve higher
continuity.

In trying to achieve the best of both worlds, we propose a new
strategy, called the mixed strategy, which is a combination of
Rarest First and Greedy. In the following subsections, we de-
rive analytical results to analyze and compare the performance
of these strategies. The key is to model the selection function
s(i) for each case, substitute it into the probabilistic model,
and derive the buffer state probability distribution.

A. Greedy Strategy

We first present the analysis of the Greedy Strategy. This
strategy aims to fill the empty buffer location closest to the
playback time first. The chunk selection function, s(i), which
is the probability of selecting B(i), can be expressed as
follows:

s(i) =
(

1− 1
M

) j=n−1∏

j=i+1

(
p(j) + (1− p(j))2

)
. (8)

Since the event that downloading does not occur for a buffer
at position B(j) (for j > i) is ¬(W (k, j)H(h, j)), hence, the
probability of this event is:

Pr[¬(W (k, j)H(h, j))] =
pk(j) + (1− pk(j))(1− ph(j)). (9)

Eq. (8) is based on the event that the server selects other
peers to upload, and the chunk selection does not occur for
all those positions closer to the deadline than B(i), with the
buffer position independence assumption stated earlier. Note,
the first term of Eq. (9) is the probability the local peer already
has the chunk for B(j). The second term is the probability
that the local peer does not have the chunk for B(j) and the
selected peer (h) does not have that chunk either. The rather
complicated formula for s(i) (Eq. 8) has a surprisingly simple
alternative form:

Lemma 1: The selection function s(i) for the Greedy Strategy
can be expressed as

s(i) = 1− (p(n)− p(i + 1))− p(1) for i = 1, ..., n− 1.

The proof is presented in the Appendix. Intuitively, it can
be understood as follows. The term (p(n) − p(i + 1)) is the
probability that any particular chunk is downloaded into buffer
positions between B(n) to B(i + 1); and the term p(1) is the

5

probability that any particular chunk is downloaded directly
from the server. The above expression for s(i) is thus the
probability that neither of these two scenarios are true.

Substituting the above formula for s(i) into Eq. (6), we get
the following difference equation for p(i):

p(i+1) = p(i)+p(i)
(
1−p(i)

)(
1−p(1)−p(n)+p(i+1)

)

for i = 1, . . . , n− 1. (10)

B. Rarest First Strategy

The Rarest First Strategy is the opposite of the Greedy
Strategy. Based on Eq. (3), we know p(i) is an increasing
function in i.9 This means the expected rarest chunk is the
latest chunk distributed by the server that is missing from the
all local peers’ buffer. So the chunk selection function s(i) for
the Rarest First Strategy can be expressed as:

s(i)=
(
1− 1

M

) j=i−1∏

j=1

(
p(j) + (1− p(j))2

)
. (11)

The meaning of each term is similar as before. The main point
is that the search for missing chunks starts from the latest
chunk B(1), then to B(2) and so on. Again, Eq. (11) has a
simple form:

Lemma 2: The selection function s(i) for the Rarest First
Strategy can be expressed as

s(i) = 1− p(i).

The proof is presented in the Appendix. The rationale for this
result is the same as that for the Greedy Strategy. The term
p(i) represents the probability that any particular chunk is
downloaded into buffer positions B(1) to B(i− 1). Therefore
s(i) as shown above represents the probability that this event
does not occur.

Again, substituting s(i) into Eq. (6), we have the following
difference equation:

p(i+1) = p(i)+p(i)
(
1−p(i)

)2

for i = 1, ..., n−1. (12)

C. Buffer Size, Peer Population and Continuity

The difference equations for p(i) in Eq. (10) and Eq. (12)
help us express the relationships between the following key
parameters:

• n, the buffer size;
• M , the population size (or equivalently p(1), which is

equal to 1/M);
• p(n), probability that B(n) is available, which reflects the

continuity and playback performance. For convenience,
we also introduce ε = 1 − p(n) which simplify the
expression of our results.

9In general, p(i) is a non-decreasing function. But for both Greedy and
Rarest First, q(i) > 0 for all buffer positions, so p(i) is an increasing function.

To derive closed-form solutions, it is most convenient to
consider the fluid form of Eq. (10) and (12) as continuous
differential equations. We use the symbol y for p(i) and the
symbol x for i. This means:

y = p(i) ; dy = p(i + 1)− p(i)
x = i ; dx = 1

The discrete equations now become:

dy

dx
=

y(1− y)(y − p(1) + ε)
1 + y2 − y

;
dy

dx
= (1− y)2y

respectively. Based on these equations, we obtain the following
results:

Lemma 3: For the Greedy Strategy, the sensitivity of buffer
size n to peer population M (or p(1) = 1/M) and disconti-
nuity ε can be expressed as

∂n

∂p(1)
≈ − 1

εp(1)
;

∂n

∂ε
≈ − 1

εp(1)
. (13)

Lemma 4: For the Rarest First Strategy, the sensitivity of
buffer size n to peer population M and discontinuity ε can
be expressed as

∂n

∂p(1)
≈ − 1

p(1)
;

∂n

∂ε
≈ − 1

ε2
− 1

ε
. (14)

The proofs are included in the appendix.

Eq. (13) to (14) characterize the key difference between
the Greedy and Rarest First Strategy. Due to the negative
gradient of n relative to p(1) and ε respectively, an immediate
observation is that more buffer space is needed for larger
peer population size M (or smaller p(1)), while other things
(such as continuity) being held constant; similarly, more buffer
space is needed for higher continuity (or smaller ε) while
population is held constant. This is intuitive. Buffer size is
directly proportional to the delay of playback relative to the
source which we will refer to as source delay. Other papers
have analyzed the relationship between population size, delay
and throughput in p2p file downloading (e.g. [18]) which are
consistent with our observation here.

The above equations also allow us to compare the Rarest
First and Greedy strategies. For incremental increase in peer
population, the need for additional buffer space when using the
Rarest First Strategy is 1/ε times less than that for the Greedy
Strategy. This means that the Rarest First is more scalable
than the Greedy strategy as the peer population increases.

On the other hand, for given peer population size, in order to
increase continuity, the need for additional buffer space by the
Greedy Strategy is p(1)/ε times less than that for the Rarest
First. This means for sufficiently large p(1) (hence sufficiently
small M), the Greedy Strategy can achieve better continuity
than Rarest First. This will be illustrated in Section IV.

The above observations are more formally summarized as
follows.

Proposition 1: Based on the p2p streaming model with large
peer populations, asymptotically

6

1) As peer population increases, both the RF and Greedy
strategies need larger buffers to maintain same continu-
ity;

2) For incremental population increase, RF needs less
buffer size to maintain continuity;

3) For given population size, Greedy can eventually achieve
better continuity than RF for sufficiently large buffer
size; and conversely, RF is better than Greedy given
limited buffer size.

The proof, parts of it already evident from the discussion
above, is included in the appendix.

D. Mixed Strategy

The intuition about the different strengths of the Greedy and
Rarest First strategies lead us to propose a mixed strategy that
can take advantage of both of these chunk selection algorithms.

Let the buffer B be partitioned by a point of demarcation m,
1 ≤ m ≤ n. The Rarest First Strategy is used first with buffer
spaces B(1), ..., B(m). If no chunk can be downloaded using
the Rarest First Strategy, then the Greedy Strategy is used with
the other partition of the buffer, B(m+1), B(m+2), ..., B(n).
When m = n−1, the Mixed Strategy is the same as the Rarest
First Strategy; when m = 1, the Mixed becomes the same as
the Greedy Strategy. Through variation of m, a peer can adjust
the download probability assigned for each partition.

The buffer state probability for B(1) to B(m) satisfies the
following equations:

p(1) = 1/M,

p(i + 1) = p(i) + p(i)(1− p(i))2 for i = 1, . . . , m−1.

The probability for B(m + 1) to B(n) can be derived from
Eq. (10) by substituting p(1) with p(m):

p(i + 1) =
p(i) + p(i)(1− p(i))(1− p(m)− p(n))

1− p(i)(1− p(i))
for i ≥ m. (15)

These equations can be solved numerically.

Recall at the end of Section II, we derived a way to compute
an upper bound on continuity that can be achieved by any
chunk selection strategy. This upper bound can help us prove
an asymptotic notion of optimality for the Mixed Strategy.
Assume the needed buffer length for different strategies is a
function of discontinuity ε and number of peers M , that is
n = f(ε,M):

Proposition 2: For large peer population M , and small dis-
continuity ε, asymptotically, the Mixed Strategy is optimal in
the sense that the most significant terms for its needed buffer
size is the same as that needed by the strategy achieving the
upper bound.

Proof: The proof is presented in appendix.

This result is rather surprising. The proof shows that Mixed
can achieve the same order of required buffer length as that

needed for the upper bound strategy10, yet RF and Greedy can-
not. In other words, Mixed always needs a smaller buffer than
RF or Greedy to achieve a given continuity (or discontinuity
ε).

Proposition 3: For a given common buffer length, the conti-
nuity of the Mixed Strategy is asymptotically (large M and
small ε) always better than that of Rarest First or Greedy. 5
better or same continuity than RF or Greedy;

Proof: The continuity p(n) is an increasing function of buffer
length n for all strategies. In Proposion 2, we proved that the
Mixed Strategy can always achieve the same continuity as
Rarest First or Greedy with fewer buffers. It therefore follows
that Mixed can always use additional buffer space to achieve
better continuity than Rarest First or Greedy.

The basic idea of the Mixed Strategy is to use the front part
of the buffer, from position 1 to m, to implement the Rarest
First Strategy to help distribute the content to as many peers
as quickly as possible; and to use the tail part of the buffer,
from position m + 1 to n, to implement the Greedy Strategy
to maximize continuity.

For given buffer length and population size, a good question
is how to find the optimal m? This can be done by a brute
force search, since there are only n possible values for m. In
practice, there is an adaptive method to search for a suitable m
in very few steps. This makes it easy to implement the Mixed
Strategy even for dynamic peer populations. This point will
be discussed in detail in the numerical examples section.

IV. Numerical Examples and Analysis

In this section, we consider a number of numerical examples
to illustrate our results and their application to protocol design.
For each numerical example, the results can be computed in
the following ways:

Discrete model: The discrete model is given by the differ-
ence equations corresponding to the various chunk selection
strategies (Eq. 1,3,5,8,11,15). The solution for the buffer state
distribution p(i) can be derived numerically. For the Greedy
Strategy, we first give p(n) a fixed value, substitute n steps
inversely from p(n) to p(1) and then compare p(1) with
1/M . If p(1) is approximately equal to 1/M then we get
the solution; else p(n) is adjusted accordingly and the inverse
substitution process is repeated. For the Rarest First Strategy,
substitute p(i) from p(1) until p(n). For the Mixed Strategy,
we compute the first part, from 1 to m, using the same
substitution process as that for Rarest First and then compute
what is left using the same trick as that for Greedy.

Continuous model: The continuous model is given by the
differential equations in Eq. (10) and (12). In general, they can
be solved numerically using MatLab. For some relationships,
we also derived closed-form solutions.

10Of course, this is not exactly saying Mixed is optimal. What strategy is
optimal is still an open problem.

7

0 10 20 30 40
0

0.2

0.4

0.6

0.8

1

Position in Sliding Window

O
cc

up
an

cy
 D

is
tr

ib
ut

io
n

p(
i)

Greedy-Dis
Greedy-Cont

Greedy-Sim

RF-Cont

RF-Sim
RF-Dis

Fig. 2. Buffer occupancy distribution for Rarest First and Greedy policies
from discrete, continuous and simulation models

Simulation model: We built a simulation program based on
our discrete model. There is one server and M peers. In each
time slot, the server distributes one chunk to a random peer;
each peer randomly selects only one other peer to contact and
download one chunk, but may upload at most two chunks to
its neighbors. The peers form an overlay network where each
peer is neighbor with a subset of the peers, randomly selected
from the peer population. The values of various parameters,
such as M , n, and average degree are specified as part of the
description of the experiment. The simulation model is used to
check to what extent the independence assumption may affect
the analytical models, specially in the case with small peer
population. Furthermore, simulation can produce a lot more
details about specific peer behavior and the dynamics of the
system including transient behavior.

Important Parameters: In most experiments, we set the peer
population to 1000, which we think is large enough to validate
our model. Actually, the larger the population is, the more
accurate is our model. The choice of buffer length is based on
the likely expectation that the achievable continuity is high
(> 99%) to enjoy a video. The minimum required buffer
length derived from the formula of the upper bound is about
13 (for M = 1000). Therefore, it is reasonable to set the buffer
length to three times this minimum size (which is 40) for most
experiments.

Exp. A: Comparing Discrete and Continuous Results with
Simulation

Our first task is to compare our discrete model, the continuous
model based on the differential equation approximation, with
simulation.

In this experiment, M = 1000 and n = 40. In the simulation,
the number of neighbors for each peer is L ≤ 60. The results
are shown in Figure 2. There are two groups of curves, one for
Greedy and one for Rarest First. In each group, there are three
curves: one calculated using the discrete iterative equations,
one calculated using the approximate continuous differential
equations, and one from simulation.

We will compare Greedy and Rarest First (as chunk selection
strategies) later on. At this point, let us focus on the accuracy

0 10 20 30 40
0

0.2

0.4

0.6

0.8

1

Position in Sliding Window

O
cc

up
an

cy
 D

is
tr

ib
ut

io
n

p(
i)

Rarest First
Greedy
Mixed

Fig. 3. Comparison of Rarest First, Greedy and Mixed

10 15 20 25 30 35 40 45 50

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Buffer Length
C

on
tin

ui
ty

Upper Bound

Mixed
Rarest First

Greedy

Fig. 4. Exp B. Continuity versus buffer size

of the different methods. First, we note that the analytical
results are reasonably close to the simulation results. Secondly,
we expect the discrepancy between the discrete model and
simulation is mainly due to the independence assumption.
For Greedy, there are fewer chunks in the buffers, hence
the independence assumption is less accurate. Thirdly, we
expect the discrepancy between the discrete and the continuous
models is mainly due to the approximation of p(i+1)−p(i) by
a continuous gradient, which happens to have a bigger effect
on the equation for Rarest First this time.

Exp. B: Comparing Rarest First, Greedy and Mixed

To compare the three chunk selection strategies, we keep the
buffer size at n = 40; and set m = 10 for Mixed (this means
the number of buffer positions running Rarest First is 10). The
results (from the discrete model) are shown in Figure 3.

To compare the different strategies for different buffer sizes,
we plot the continuity for buffer sizes between 20 and 50
in Fig 4. It is observed that Rarest First consistently beats
Greedy in continuity. The reason is evident from our analysis
and Fig 2. Rarest First works hard at distributing new chunks
from the server, achieving a performance not far from the
theoretical limit of log2(i). The Greedy, however, is like a
procrastinator, making a great effort to fill the buffers only
near the playback time for each chunk.

From analysis earlier, we also know that Mixed can always
outperform RF and Greedy. From Fig 4 we can see that when

8

0 5 10 15 20
0.85

0.9

0.95

1

Parameter m

C
on

tin
ui

ty

Rarest First
Greedy
Mixed

Fig. 5. Exp C. The effect of varying m on continuity of the Mix Strategy

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0.85

0.90

0.95

1.00

p(m)

C
on

tin
ui

ty

M = 1000
 n = 40

(a) The effect of varying p(m) on
continuity of the Mix Strategy

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
20

30

40

50

60

70

80

90

p(m)

B
uf

fe
r

Le
ng

th

M = 1000
 ε = 0.005

(b) The effect of varying p(m) on
buffer length of the Mix strategy

Fig. 6. p(m) v.s. best Mixed strategy

the buffer length is larger than a threshold (around 25), the
gap between Mixed and Upper bound becomes quite small.

Exp. C: Picking the optimal m in Mixed Strategy

We now take a closer look at the Mixed Strategy. In the last
experiment, the parameter used to partition the buffer, m, is a
constant. Here, we fix the buffer size to be 40 and vary m. The
performance of continuity is plotted against m in Figure 5.

For continuity, it is quite interesting. There is an optimal m
when continuity is maximized. These two plots show that
there is a knee, occurring at m ≈ 10 when a balance of high
continuity is achieved.

Another way to view the Mixed strategy is the value of p(m),
which was discussed in the Mixed Strategy in last section. The
value of m is used to partition of Rarest First and Greedy in the
Mixed Strategy. In this numerical experiment, the number of
peers is 1000 and the result is shown in Figure 6(a) and 6(b).
In the first experiment, the buffer length is given 40, while
the value of p(m) varies. The continuity is not very sensitive
for the varying p(m). When p(m) is approximately equal
to 0.3, the continuity is best. In the simulation, we assume
p(m) = 0.3. In the second experiment, the discontinuity is
fixed at 0.5%, while p(m) varies. The two figures show that
continuity is not very sensitive when p(m) or m varies. In
the dynamic network, the value p(m) is controlled to achieve
good performance.

Exp. D: Performance for Small Scale Networks

Here, we test the relationship between buffer size, population

5 10 15
0.9

0.92

0.94

0.96

0.98

Number of Peers

C
on

tin
ui

ty

Rarest First
Greedy

Fig. 7. A small network

0.92 0.94 0.96 0.98
0

20

40

60

80

100

Continuity
B

uf
fe

r
Le

ng
th

Rarest First
Greedy

(a) The small network with fixed
peers

5 10 15 20 25 30 35 40
10

15

20

25

30

Number of Peers

B
uf

fe
r

Le
ng

th

Rarest First
Greedy

(b) The small network with fixed
continuity

Fig. 8. Second and Third Experiments in Exp. D.

and continuity, as studied in Proposition 1.

There are three examples in this experiment and the result in
each case is derived from simulation (the analytical models
are less accurate for small networks). Each result is calculated
based on the average values of 3000 time slots.

In the first experiment, the number of peers in the network
varies from 5 to 15 and each peer sets n = 15. We compare
the continuity achieved by Greedy and Rarest First. Figure 7
shows that Greedy achieves better continuity when the number
of peers is sufficiently few relative to the value of continuity
(in this case 9), as we expect.

In the second and third experiment, we study network with
small peer population. Though peer population in real system
is much larger, the small network case is more appropriate
for comparison of different chunk selection strategies. In the
second experiment, the number of peers be fixed, M =
40. However, the peers have different quality requirements
(denoted 1 − ε), and have to change their buffer length to
meet the requirements. The result is shown in Figire 8(a).

In the third experiment, we let the peers’ continuity require-
ment be fixed at 0.93, but the number of peers (M) vary from
5 to 40. In order to make sure the continuity is larger than
0.93, each peer has to enlarge its buffer if the number of peers
increases. The result is shown in Figure 8(b).

The results from the above two experiments are consistent with
Lemma 3 and 4, and Proposition 1, namely Greedy is able
to provide a high quality requirement with less buffer length
while Rarest First can provide good playback performance for

9

1000 1200 1400 1600 1800 2000
0.6

0.7

0.8

0.9

1

Time Slot

C
on

tin
ui

ty

Rarest First
Greedy
Mix

Fig. 9. Continuity of the Network Simulation

a large number of peers.

Exp. E: Study of Dynamics

While the analytical model is able to give us average steady
state system behavior, simulation has the advantage of giving
us the dynamic behavior of specific settings. In this experi-
ment, we simulate the case of M = 1000 and n = 40, and
look at how continuity evolves over time.

We compare the continuity achieved by different strategies.
We simulate 2000 time slots. The data is taken from time
slots 1000 to 2000 to capture the steady state conditions. In
each time slot, the continuity is the average continuity of all
peers, that is the number of peers being played chunks divided
by total peers. As shown in Figure 9, Mixed not only achieves
the best continuity, but its continuity is also much more steady
than that of other two strategies.

Exp. F: Adapting the Mixed Strategy to Peer Population

Based on our analysis and the numerical examples, we show
that the Mixed Strategy can achieve the best continuity given
a fixed peer population size in the network. In reality, the peer
population size is unknown and is likely to change over time.
Here we describe an algorithm to adaptively adjust the Mixed
Strategy’s m to the network dynamics.

In the previous experiments, m is fixed (at 10). One way to
adapt m is by observing of the value of p(m). We can set
a target value for p(m), say pm = 0.3. When a peer finds
the average value of p(m) is less than pm, the peer increases
m, else the peer decreases m. In our simulation, every peer
calculates the average value of p(m) for 20 time slots and then
decides the value of m based the average value.

We conduct the following experiment. Let there be 100 peers
in the network initially. After every 100 time slots, another 100
new peers with empty buffer are added to the network, which
means there are i × 100 peers in the network after i × 100
time slots. For all the peers, the initial value of m is 10. We
calculate the average continuity and average value of m for
the initial 100 peers in the network as a function of time. From
Figure 10(a) and 10(b), we observe that the average value of
m (of the 100 tagged peers) adapts to the increasing peer

0 200 400 600 800 1000
7

7.5

8

8.5

9

9.5

10

Time Slot

m
 o

f M
ix

ed

m of Mixed

(a) Average continuity as a function
of time

200 400 600 800 1000

0.92

0.94

0.96

0.98

1

Time Slot

A
ve

ra
ge

 C
on

tin
ui

ty

Rarest First
Mixed

(b) How m adapts to network dy-
namics

Fig. 10. Performance Results from Exp. F.

population. Furthermore, the continuity of the Mixed Strategy
is quite steady (except a glitch11 between time slot 700-800)
compared to that of Rarest First.

V. ROBUSTNESS OF THE MODEL

For simplicity and tractability, we have made a number of
assumptions in the P2P streaming model. It is important
to understand the implication of these assumptions. In this
section, we rely on simulation to study the robustness of the
model, to look at what happens when some of the assumptions
are violated.

A. Discrete Model with Fractional Bandwidth

One basic assumption in the model is about physical band-
width constraints. It is assumed that there is enough bandwidth
in the network to support the playback rate of all peers. In
reality however, the bandwidth may be limited so that it is not
sufficient to satisfy all peers’ requirement. Assume the total
playback rate is P and the total download rate of all peers
is f × P and f is a real number in (0, 1) modeling limited
bandwidth. We show that in this case, only a small adjustment
to the chunk selection function s(i) is necessary, to keep
our model still fairly accurate. Because of limited bandwidth,
suppose each peer can only upload a chunk successfully with
probability f . The server still pushes one chunk per time
slot. For Greedy, s(n − 1) is changed to f − 1

M due to the
limited bandwidth. Similar, for Rarest First, s(1) is changed to
f− 1

M . Therefore, the corresponding chunk selection function
for Greedy becomes s(i) = f − p(1)− p(n) + p(i+) and that
for for Rarest First becomes s(i) = f − p(i). The resultant
difference equations for the discrete model become: (16) and
(17):

p(i+1) = p(i)+p(i)
(
1−p(i)

)(
f−p(1)−p(n)+p(i+1)

)

for i = 1, . . . , n− 1. (16)

p(i+1) = p(i)+p(i)
(
1−p(i)

)(
f−p(i)

)

for i = 1, . . . , n− 1. (17)

11Probabilistically speaking, there is always some chance that a peer with a
new chunk does not get requested by other peers due to random peer selection,
and this initial delay can unfortunately significantly affect the continuity of
that chunk.

10

0 10 20 30 40
0

0.2

0.4

0.6

0.8

Position in Sliding Window

O
cc

up
an

cy
 D

is
tr

ib
ut

io
n

p(
i) RF − Dis

RF − Sim

Greedy − Sim

Greedy − Dis

Fig. 11. Buffer occupancy distribution of the network with limited bandwidth

The following experiment is designed to validate our discrete
model with a fractional of the bandwidth requirement. In the
simulation experiment, there are 1000 peers. Each peer has a
buffer with length 40. Set the fraction of bandwidth support
to f = 0.7. We run separate experiments using the Greedy
Strategy and Rarest First Strategy, and compare them with the
results computed from the discrete model (Eq. (16) and (17)).
Figure 11 shows the modified model is quite accurate.

B. Server Using Pull Strategy

In our model, the server is assumed to push the newest chunks
to peers. One question is whether it is possible to do away with
this asymmetry between the server and peers complete, and
let the peers pull the chunks from the server. A simulation
experiment is carried out to observe the performance when
the server stops pushing. Again let there be 1000 peers in
the network and buffer length be 40 for each peer. Figure 12
shows the result. The Rarest First strategy is still able to
perform reasonably well, although continuity reduced by about
20%. But for Greedy, the P2P mechanism becomes completely
ineffective. Each peer’s continuity reduces to 1/M , as if there
is no P2P support. The result indicates the assumption that
server uses push is necessary.

C. Vary Size of Server Fan-out

In the original model, we assume the server randomly pushes
out the newest chunk to the whole network of peers. In
reality however, the server may only be able to push to a
subset of the peers. To study this situation, we changed the
simulation to allow the server to only work with a subset
of peers in its push. The effect of different sizes of the
subset is shown in Figure 13. When the subset size is greater
than a relatively small threshold, in this case 40 for a total
population size of 10000, the curve has become quite flat. The
implication of this experiment result is that our assumption
that the server connects to all peers is justifiable. In real P2P
streaming networks, having the server connect to all peers is
not implementable, but the same performance can be achieved
by connecting to 40− 60 peers.

0 10 20 30 40
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Position in Sliding Window

O
cc

up
an

cy
 D

is
tr

ib
ut

io
n

p(
i)

RF − Sim

Greedy − Sim

Fig. 12. Buffer occupancy distribution of the network when server uses pull
strategy

0 20 40 60 80 100
0

0.2

0.4

0.6

0.8

1

Subset Size

C
on

tin
ui

ty
Rarest First

Greedy

Fig. 13. Buffer occupancy distribution of the network when server talks with
a subset

VI. BRIEF DISCUSSION OF RELATED WORKS

In P2P content distribution, practice is currently leading theory.
A number of operational or experimental P2P systems have
been developed and successfully deployed for file sharing [3],
live streaming [4], [16] and Video-on-Demand streaming [11].
Following the success of these systems, there is significant
interest in modeling and analyzing how such systems work,
and in understanding the underlying factors that these systems
depend on.

One important question studied by the theoretical papers is
the capacity of the P2P system for disseminating content to
a population of peers, irrespective of whether the overlay
P2P network is structured or unstructure. The general answer
is related to that of the max-flow problem, which can be
complicated depending on the network topology. Under the
uplink sharing model assumption and for large peer pop-
ulation, [6] derived a closed-form upper bound, for static
populations. Separately, [14], [15], [17] studied the problem
for dynamic peer population. Following [17], [12] studied
design trade-off between system throughput and contribution
fairness, indicating the price for achieving optimal capacity
will be uneven contribution. There are a number of extensions
to the capacity bound, taking into consideration of degree

11

limits, availability of helpers and other factors, and these
references are not listed here separately.

Once we know the limit, the important remaining question is
how to achieve the limit. In this regard, there are a number
of studies of distributed algorithms based on the unstructured
approach, notably [5], [9], [13], [18]. Out of these studies,
[9] was the paper from which the current paper is derived.
The other three papers all studied various chunk selection
algorithms for P2P content distribution. All these papers make
the same abstraction: that the peer to peer content exchanges
occur in slotted time. [9] assumes a pull method: a peer finds
another peer to download a chunk of content. The other three
papers assume a push method: a peer pushes a chunk of
content to another selected peer. In most cases, the selection
of a neighbor (to pull or push a chunk) is random. In the case
of pull, there is some chance that two or more peers try to
pull from the same target; in the case of push, there is the
chance that two or more peers try to push to the same peer.
In both cases, the problem can be avoided either by assuming
peers are omniscient and try to avoid such collisions, or by
assuming the number of peers is large so that such collisions
occur rarely and it can be assumed they don’t occur.

The work from [9] and the other three papers reach some
similar, but also some different conclusions. This is because
they define different metrics. In [5], [13], [18], the authors
define diffusion rate and (source) delay as general metrics
for content distribution. These metrics are not specifically
targeted at file downloading or streaming. Asymptotically, they
are important goals for any content distribution mechanism.
These papers proceed to prove that certain P2P algorithms
can achieve optimal diffusion and optimal delay. Out of these
optimal algorithms, some require global knowledge, which
implies potentially high message exchange overheads. Most
amazingly, it is shown that a simple chunk selection algorithm
(essentially corresponding to the rarest first) with random peer
selection is proven to be optimal for both diffusion rate as well
as delay.

The model and metric in [9], however, specifically targets P2P
streaming. The model incorporates buffers from each peer,
and each P2P algorithm yields a different steady state buffer
state distribution. The metric to optimize is defined as the
continuity, or the percentage of peers able to play back the
content from its buffer (of fixed size). Based on this model, [9]
is able to conclude that rarest first alone is usually not optimal;
you can do better by devoting part of the buffer to fetching
chunks that are more urgent due to the deadline for playback.
This is the first successful effort, to the best of our knowledge,
to model and study P2P streaming algorithms analytically12.

12To be fair, from a practical perspective, two other works on P2P streaming
that preceeded [9] are very influential. One is Coolstreaming [4] that first
demonstrated convincingly by experiments that P2P streaming based on
unstructure algorithms can work; the other is BiTos [16] that showed a mixed
strategy works well, although their mixed strategy is somewhat different that
that in [9] and there was no analysis in [16] to back the idea up.

VII. Conclusion

The art of modeling is on the one hand to capture the essential
aspects of the original system, and on the other hand to
be simple enough to yield some insights about the original
system. We feel that is what our model accomplished for
the P2P streaming problem. In addition, the insights from
our model also lead to some practical algorithm that can be
incorporated into well established systems as improvements.

There are a number of interesting directions for further studies.
We believe the simple probability model can be extended to
analyze other chunk selection and peer selection algorithms.
The buffer requirements for p2p streaming is not the focus
of this study, and can certainly be more thoroughly analyzed.
Finally, whether there exist an optimal strategy is still an open
problem.

VIII. Acknowledgement

We would like to thank Zhao Qiao who provided the idea
about the Upper Bound in Section II. We would also like to
thank Prof Bruce Hajek, who asked interesting questions and
made valuable suggestions for many of the extensions of this
paper from its original conference version.

REFERENCES

[1] PPStream, “http://www.ppstream.com/.”
[2] PPLive, “http://www.pplive.com/.”
[3] BitTorrent, “http://www.bittorrent.com/.”
[4] X. Zhang, J. Liu, B. Li, and T.-S. P. Yum, “Coolstreaming/donet: A

data-driven overlay network for efficient live media streaming,” in Proc.
INFOCOM, 2005.

[5] T. Bonald, L. Massoulie, F. Mathieu, D. P. Andrew, and Twigg,
“Epidemic live streaming: Optimal performance trade-offs,” in ACM
Sigmetrics, 2008.

[6] J. Mundinger, R. Weber, and G. Weiss, “Optimal scheduling of peer-to-
peer file dissemination,” in Preprint version in arXiv, 2006.

[7] Z. Qiao, J. Lui, and D. Chiu, “Exploring the optimal chunk selection
policy for data-driven p2p streaming systems,” in P2P, 2009.

[8] B. Fan, D. M. Chiu, and J. C. Lui, “The delicate tradeoffs in bit torrent-
like file sharing protocol design,” in ICNP, 2006.

[9] Z. Yipeng, D. Chiu, and J. C. Lui, “A simple model for analyzing p2p
streaming protocols,” in ICNP, 2007.

[10] Y. Wang, T. Z. Fu, and D.-M. Chiu, “Analysis of load balancing
algorithms in p2p streaming,” in Allerton Conference, 2008.

[11] Y. Huang, T. Z. Fu, D. Chiu, J. C. Lui, and C. Huang, “Challenges,
design and analysis of a large-scale p2p vod system,” in ACM Sigcomm,
2008.

[12] B. Fan, D.-M. Chiu, and J. C. Lui, “The delicate tradeoffs in bit torrent-
like file sharing protocol design,” in ICNP, 2006.

[13] L. Massoulie, A. Twigg, C. Gkantsidis, and P. Rodriguez, “Randomized
decentralized broadcasting algorithms,” in Infocom, 2007.

[14] R. Kumar, Y. Liu, and K. Ross, “Stochastic fluid theory for p2p
streaming systems,” in Infocom, 2007.

[15] L. Massoulie and M. Vojnovic, “Coupon replication systems,” in ACM
Sigmetrics, 2005.

[16] A. Vlavianos, M. Iliofotou, and M. Faloutsos, “Bitos: Enhancing bit-
torrent for supporting streaming applications,” in INFOCOM 25th IEEE
International Conference on Computer Communications. Proceedings,
2006.

[17] D. Qiu and R. Srikant, “Modeling and performance analysis of
bittorrent-like peer-to-peer networks,” in ACM SIGCOMM, 2004.

[18] S. Sanghavi, B. Hajek, and L. Massoulie, “Gossiping with multiple
messages,” in IEEE Transactions on Information Theory, 2007.

12

Appendix

Proof of Lemma 1: From Eq. (6), we have

p(i + 1)− p(i) = s(i)p(i)
(
1− p(i)

)
.

From Eq. (8), we have

s(i + 1)− s(i) = s(i + 1)p(i + 1)
(
1− p(i + 1)

)
.

Note the right-hand-side of the above two equations are the
same, except the index i versus i + 1. This means

s(i + 1)− s(i) = p(i + 2)− p(i + 1),
n−2∑

j=i

(s(j + 1)− s(j)) =
n−2∑

j=i

(p(j + 2)− p(j + 1)),

s(i) = s(n− 1)− p(n) + p(i + 1).

From the equation of s(i) (Eq. 8), we get s(n−1) = 1−1/M .
Therefore, we have s(i) = 1− p(1)− p(n) + p(i + 1).

Proof for Lemma 2: Again, from Eq. (6), we have

p(i + 1)− p(i) = s(i)p(i)
(
1− p(i)

)
.

From Eq. (11), we have

s(i + 1)− s(i) = s(i)p(i)
(
p(i)− 1

)
.

This time, the right-hand-side of these equations are again the
same except the sign (and index off by 1). This gives us

s(i + 1)− s(i) = −
(
p(i + 1)− p(i)

)
,

i−1∑

j=0

(s(j + 1)− s(j)) = −
i−1∑

j=0

(
p(i + 1)− p(i)

)
,

s(i) = s(1) + p(1)− p(i).

When there are M peers in the network, p(1) = 1/M , which
is the probability the sever selects it for sending the newest
chunk. From Eq. (11), we have s(1) = 1− 1/M . Therefore,
we have s(i) = 1− p(i).

Proof of Lemma 3: Assume ε = 1 − p(n) and ε − p(1) 6=
0, which covers all the chunk selection strategies we are
interested in. We get the following solution for the differential
equation:

x =
ln

(
y

y+ε−p(1)

)

ε− p(1)
+

ln
(

y+ε−p(1)
1−y

)

1 + ε− p(1)
− ln(y + ε− p(1))− C.

Here C is a constant that can be derived from the boundary
condition y = p(1) = 1/M :

C =
ln(p(1)

ε)
ε− p(1)

+
ln(ε

1−p(1))

1 + ε− p(1)
− ln(ε)− 1.

Solving the above equation, we can express n, the buffer size,
in terms of the other parameters p(1) and ε:

n=
ln

(
(1−p(1))p(1)

(1−ε)ε

)

p(1)− ε
+

2 ln
(

1−p(1)
ε

)

1 + ε− p(1)
+1+ln

(ε

1− p(1)

)
.

Although n is an integer, we can still study its sensitivity
with respect to p(1) and ε by differentiation, which yields the
results in the Lemma.

Proof of Lemma 4: With a similar method as in the proof for
Lemma 3, we derive the solution for the differential equation
for the Rarest First algorithm:

x =
1

1− y
+ ln

(y

1− y

)
− C,

C = ln
(p(1)

1− p(1)

)
+

p(1)
1− p(1)

.

Again, p(1) and ε represent the number of peers and the
streaming quality respectively, and y(n) = 1 − ε. Similarly,
we express n as a function of p(1) and ε:

n =
1
ε

+ ln
(1− ε

ε

)
− ln

(p(1)
1− p(1)

)
− p(1)

1− p(1)
.

Differentiating, we get the results in the Lemma.

Proof of Proposition 1 The proofs for part (1) and (2) follow
directly from Lemma 3 and 4.

The proof for (3) can be derived by going back to the
differential equations of the continuous model. We prove it
in three steps. First, a special buffer length ns is found,
where the discontinuity εG(ns) is less than εRF (ns). Secondly,
we show the buffer required to satisfy incremental continuity
requirement beyond ns is less for Greedy, which means the
Greedy Strategy beats Rarest First beyond the special buffer
length ns. Thirdly, we compare ∂n

∂ε from the beginning point
n = 1, to support the statement: Rarest First is better when
buffer length is limited.

First step: M is given. Assume a target discontinuity εs such
that εs = p(1) = 1/M . This simplifies the differential equation
for Greedy to the following:

dy

dx
=

y2(1− y)
1 + y2 − y

This equation can be solved to yield the solution:

x = −1
y
− ln(1− y)− C,

C = − 1
p(1)

− ln(1− p(1))− 1

Substituting εs = p1 back, the needed buffer length for this
value of εs is:

nG =
1
εs

+ ln(
1− εs

εs
)− εs

1− εs
.= ns

13

The continuous differential equation for RF is not simplified,
but can be solved to yield:

nRF =
1
εs

+ 2 ln(
1− εs

εs
)− εs

1− εs
> ns

Because the function p(n) is an increasing function in n,
therefore the discontinuity εRF (ns) is greater than εG(ns) =
p(1). This ensures Greedy out-performs Rarest First for all
buffer lengths greater than ns.

Second Step: For buffer lengths beyond ns, the approximate
absolute value of ∂n

∂ε in equation Eq. (13, 14) becomes:

|∂n

∂ε
| ≈ 1

ε× p(1)
, for Greedy

|∂n

∂ε
| ≈ 1

ε2
+

1
ε
, for RarestF irst

The value of ε for buffer length beyond ns is less than p(1);
therefore |∂n

∂ε | for Greedy is less than that for Rarest First,
which means Greedy consumes less buffer length for the
same incremental continuity requirement beyond ns. Based
on step 1 and 2, the conclusion is that Greedy achieves better
continuity if buffer length is large enough.

Third Step: If the buffer length is very limited, which means
ε is much bigger than p(1). By the same argument as that in
the second step, |∂n

∂ε | for Greedy is larger than that for Rarest
First, which means Greedy consumes more buffer length for
the same incremental continuity requirement. Both Greedy
and Rarest First start from n = 1 with the same continuity
p(1) = 1

M . Therefore, Rarest First is better when buffer is
very limited.

Proof of Proposition 2: Based on the definition of Upper
Bound chunk selection function at the end of Section II (that
is s(i) = i for all i), we can write down the corresponding
differential equation for it, and derive the following solution:

x = ln(y)− ln(1− y)− C,

C = ln(
p(1)

1− p(1)
)− 1

nUB = ln(
1− ε

ε
)− ln(

p(1)
1− p(1)

) + 1

We now compare nUB , the needed buffer length for Upper
Bound, with nMixed, nRF and nG, the corresponding buffer
length requirements for Mixed, RF and Greedy, based on their
most significant terms. For nUB , it is O(ln(1

ε)) + O(ln(M)).
From the proof of lemma 4, nRF is O(1

ε)+O(ln(M)), while
nG is O(1

p(1)−ε (ln(1
ε) + ln(M))). So the order of nRF and

that of nG are both larger than that of nUB . However, for
the Mixed Strategy, the Rarest First part is given a relative
large discontinuity and the Greedy part is given a relative large
p(1). Assume the continuity for the Rarest First part is λ,
or p(m) = λ. This means the order of nMixed is O(1

1−λ +
ln(M) + 1

λ−ε (ln(1
ε) + ln(M))).

In the Mixed Strategy, λ is controlled by varying the buffer
length of the Rarest First Strategy. The maximum λ we can
get is p(m), which is the continuity of Rarest First Strategy
with buffer length m. If the desired value for λ is not close
to 1, we show that it can be achieved by picking m from a
narrow range of values for any M in a large range of values.
From the proof of lemma 4, we have a closed-form solution of
the buffer length n for RF, as a function of M and λ. Consider
the regime when p(1) ≈ 0, this function is simplified to:

M = en−ln 1−λ
λ − 1

λ

If λ is picked to be not close to 0 and 1, ln 1−λ
λ − 1

λ is relative
small compared with n. This means M from a large range of
values can be satisfied using n from a narrow range of values.

Let us go back to the expression for nMixed above. Since for
almost any M we can easily pick m to make λ a constant,
the order of nMixed becomes O(ln(1

ε)) + O(ln(M)), which
is the same as that of nUB .

