
Decentralized Replication Algorithms for Improving
File Availability in P2P Networks

W.K.Lin, C.Ye, D.M.Chiu
Department of Information Engineering, The Chinese University of Hong Kong

wingkai.lin@gmail.com,{cye5, dmchiu}@ie.cuhk.edu.hk

Abstract— Being autonomous and scalable, Peer-to-Peer systems
provide a paradigm for sharing files in the Internet. However,
different from conventional structured replication systems like
content distribution networks (CDN), peers in an unstructured
P2P system may have different, sometimes low, online availability,
and usually get only partial information about the resources
of the system. Therefore, how to achieve good system level file
availability by autonomous peers is an important goal in P2P
replication systems. In this paper, we investigate decentralized and
cooperative resource allocation algorithms in a class of P2P systems
that provide replication service. We formulate this replication
problem as an optimization problem, and propose several heuristic
algorithms respectively. They include (a) a random algorithm, (b) a
group partition algorithm that relies on peers’ forming gro ups, and
(c) a greedy search algorithm based on an estimated system-level
file availability target. We compare and evaluate these algorithms
by simulations, and observe that each of them has advantages
depending on the system parameters.

I. I NTRODUCTION

Peer-to-peer(P2P) applications have become tremendously
popular as a way of sharing data in the Internet. Existing
P2P systems can be categorized into two groups: (a) a dis-
tributed system with central planning and deployment; (b) a
distributed system based on ad hoc participation. Examplesof
(a) are content distribution networks (CDN) [1], serverless video
streaming systems [2] and distributed file storage systems [3],
[4]. Examples of (b) include file swapping networks [5], [6],
application layer multicast services [7] and application layer
multicast-based streaming [8]. Naturally, some systems can be
considered as in-betweens, such as Napster [9] and Skype [10],
where there are central directories or authentication services.

In this paper, our interest is in viewing a class of P2P systems
as a mostly ad hoc replication system. In this system, each peer
has a number of files to share and alsocooperatesto offer
storage space to replicate a collection of files. However, peers
are not online all the time. The ad hoc nature, determining
how files are replicated, may potentially lead to poor and
uneven file availability without proper coordination. Therefore,
it is believed that file availability is an important issue when
deploying replication service in P2P systems. We interpretthis
as aresource allocation problemwhich includes the following
two issues:

• Storage allocation: to decide how many replicas can be
produced for each file upon the limitation of storage space.

• Replica placement: to decide the set of peers who are
going to store those replicas of each file so as to achieve
a reasonable level of file availability.

If there is only a small number of files and peers in the
replication system, one can centrally search for an optimal
solution by enumerating all possible schemes. However, the
solution space increases dramatically when the number of peers
and files increases, and therefore centralized algorithms will
become computationally infeasible. We are concerned about
deploying decentralized algorithms for peers to collaboratively
solve this resource allocation problem. It is assumed all through
this paper that some incentive mechanisms exist in the system to
avoid free-riding and to encourage peers’ cooperation, as in [11].
Three decentralized replication algorithms are studied:

1) A random algorithm that requires the least information
from neighbor peers.

2) A group partition algorithm that attempts to achieve an
even file availability distribution using more partitioned
knowledge.

3) A greedy search algorithm based on the estimated system-
level file availability target.

These algorithms are evaluated by simulations. It is observed
that each can be useful depending on system parameters.

There has been a considerable amount of research work on
object replication to different locations or computers. In[12],
the author studied the file allocation problem of replicating
a single file over a set of computers. The file is demanded
by various users who have different access costs to different
computers. The author proved that the optimal assignment of
the replicas to the computers that minimizes the total cost is
NP-complete. Authors in [13] studied the problem of replicating
objects optimally in content distribution networks, in which each
autonomous system (AS) replicates some objects and demands
objects stored in other ASes at the same time. The optimality
of this replication is defined as the minimization of the average
inter-AS hop distance a request must transverse. They proved
that this optimization is NP-complete, and proposed some
centralized heuristic algorithms to solve the replicationproblem.

Web caching can also be regarded as a distributed replication
network. In [14], the authors studied the problem of distributing
a fixed set of web proxies in the Internet. There was a setup cost
involved when assigning a proxy to a potential site, as well as a
link cost for connecting any two potential sites. They modeled
the network topologies as trees, and proposed a centralized
algorithm to distribute the proxies with minimum total cost.
Authors in [15] also investigated the placement of a fixed set
of web server replicas to potential web sites. Instead of using
tree-based models, they modeled the placement problem as a

K-median problemand developed several centralized placement
algorithms to solve it.

Another approach can be found in [16], which focused on
the problem of assigning file replicas according to the files’de-
mand characteristics. The authors described a decentralized and
adaptive protocol to replicate files in a way that balances server
load. A message-based protocol used to replicate resourcesin
a replication network was developed by Koet al. [17]. In their
model, each piece of resources is tagged with a color, and a
distributed algorithm was developed for each node to operate,
with an attempt to maximize its own distance to a node that
holds an object with the same color. The algorithm eventually
converged to an optimal allocation. Authors in [18] considered
assigning replicas in an unstructured P2P system, focusingon
minimizing the expected search size of the search queries. Their
results showed that replicating files proportionally to thesquare
root of a file’s demand popularity is an optimal replication
scheme. While ignoring the issue of search cost, authors in [19]
proved that having the number of file replicas proportional
to their request rates can minimize the average downloading
bandwidth. They showed that such replica distribution can be
achieved in a decentralized way by using LRU, with a system
performance close to optimal.

Our work in this paper differs from previous works in
the following aspects. The problem addressed in [12], [14],
[15] was concerned with how to replicate a file so as to
minimize transmission cost and link delay. [16] investigated
the problem of balancing server load by replication. And the
replication objectives in [18] and [19] were to minimize a
search metric and downloading bandwidth respectively. As an
orthogonal evaluation to the existing replication relatedstudies,
we put our focus on how to replicate a set of files so as to
optimize file availability. There has already been some research
dealing with this issue, such as [20], [21]. However, in our
model, peers are allowed to have different availability, which
is more general in comparison with previous models [12],
[13], [15], [20]. Furthermore, we take erasure code replication
into account, which can degenerate to traditional replication
and achieve better replication performance for certain system
parameters [22]. Finally, our work differs from [21] in that
[21] tried to achieve a pre-determined availability target. Our
algorithms, on the other hand, try to optimize file availability
based on given resources.

II. P2PREPLICATION SYSTEM

In this section, we interpret a P2P network as a replication
system, in which peers cooperate to replicate files for each
other with the use of erasure coding. Table I summarizes the
parameters used in our model.

A. Peers

In our model, peers are assumed to cooperate aiming at the
overall replication goal. When a peer joins the system, it is
willing to offer a certain amount of storage resources for other
peers to place their file replicas. In return, it can also distribute
its file replicas to other peers, thereby increasing availability of
its own files.

Fi The set of files to be replicated in peeri

F The set of files in the system,F =
S

i Fi

Pi Writable peer set of peeri
P The set of peers in the system,P =

S

i Pi

N Number of peers in the system:N = |P|
M Number of files in the system:M = |F|
Γ Size of each erasure coded block
p Peer availability vector

s = [si] Peer storage capacity
f = [fj] File size of each filej
b = [bj] Number of blocksbeforeerasure coding each filej
Ω = [Ωj] Storage overhead of each filej
k = [kj] Number of blocksafter erasure coding each filej
R = [ri,j] A feasible replica placement

p[rj] Availability vector of peers replicating filej
A = [Aj] File availability distribution

TABLE I

SYSTEM PARAMETERS

Each peer in this replication system is characterized by three
parameters. First, we denote the online availabilitypi ∈ [0, 1]
as the proportion of the time peeri stays online. When a peer is
online, all the replicas it stores are available and accessible by
other peers in the replication system. Therefore, the probability
of retrieving the replicas stored in peeri is equal to its
availability pi. Second, peeri has a set of filesFi that needs to
be replicated. We do not consider the bandwidth consumption
between peers in this paper, and file replicas are assumed to be
assigned to other peers in a negligible amount of time. The third
parameter is the amount of storage space that peeri offers for
replication purposes, denoted bysi. This shared storage space
is made available to other peers in the system.

B. Erasure code replication

Peers in this replication system adopt erasure code to replicate
files. In erasure code replication, a file is divided intob blocks.
A variable amount of erasure code redundancy is then added to
these blocks so thatk > b blocks are obtained in total, with each
block having the same size as before. The erasure-coded blocks
are dependent on each other. Retrievinganyb out of k blocks is
enough to reassemble the original file. Authors in [22] provided
a comparison between erasure code replication and traditional
replication (i.e. replicating a complete file). They also pointed
out that whenb = 1, erasure code replication is equivalent to
traditional replication. Therefore, there is no loss in generality
by assuming the use of erasure code.

Here we assume that the blocks created are assigned tok
different independent peers. The file availabilityA is defined
as the probability of recovering the original (and complete) file
based on these stored blocks. As one peer stores one single
block of a file, this availability is equal to the probabilityof
having at leastb out of k peers online:

A({pi}, b, k) =

k
∑

h=b

P{h peers are online} (1)

where{pi} represents the online availability of thek peers.

C. Estimation of file availability

The availability of a file after replication is comprised of
two parts: the erasure-coded blocks stored in the network
and the entire file in the original peer, provided it is kept
there. The probability of having exactlyh peers/erasure-coded
blocks available equals to the sum of the probabilities of any
permutation that haveh peers online out ofk:

P{h peers are online} =

p1p2 . . . ph(1− ph+1)(1 − ph+2) . . . (1− pk)+

p2p3 . . . ph+1(1 − ph+2) . . . (1− pk)(1 − p1) + . . . +

pk−h+1pk−h+2 . . . pk(1− p1)(1 − p2) . . . (1− pk−h)
(2)

Since each peer in the system may have a different online
probability, it will be too expensive to calculate the exactfile
availability. Therefore, we use the average peer availability as
an estimation instead. Hence, the file availability gained from
erasure coding can be calculated as:

A({pi}, b, k) =

k
∑

h=b

Ch
k · p̄i

h · (1− p̄i)
k−h (3)

wherep̄i refers to the average peer availability of set{pi}. By
including the original copy, the total file availability becomes

A({pi}, b, k) = 1−(1−pi) ·
k

∑

h=k−b+1

Ch
k ·(1− p̄i)

h · p̄i
k−h (4)

wherepi is the availability of the peer who shares this file.

D. Problem formulation

A real world P2P replication system is complicated to model.
Part of the problem comes from the complexity of network
topology itself, while others, for example, from network dynam-
ics and protocol messages. In this paper, we propose a replica-
tion model to abstract the above aspects. Although the model
is simple, it is capable of illustrating the difficulties in resource
allocation in a real world P2P replication system, specifically,
heterogeneity of peer availability and the complexity of replica
assignment.

Let us consider a replication system with a fixed population
of P peers whose availability distribution isp. Each peeri has
a set of filesFi to replicate. The set of all files to replicate in
the system isF = ∪iFi. We denote the number of peers as
N = |P| and the number of files asM = |F|.

Before replicating, a filej ∈ F is first divided intobj blocks,
with each block in the size ofΓ. Hence,fj = bj Γ. In addition,
all files are segmented by the same block sizeΓ, and erasure
coding produces redundancy without changing the block size.
This meansfj/fj′ = bj/bj′ for any two filesj and j′. For a
given file j ∈ Fi, peer i needs to decide how much erasure
coding redundancy should be added, which is denoted by the
stretch factorΩ. For a particular stretch factorΩj , peeri creates
kj = Ωjbj erasure-coded blocks, to be assigned tokj different
peers. For simplicity, we assume the storage space offered by
peeri is always in units of the block sizeΓ. This assumption
is justified when the block sizeΓ is comparatively small with

shared storage spacesi, and this is generally true for current
commodity storage products.

From the angle of individual file,Ωj should be as large
as possible in order to maximize file availability. The largest
possible value is given byΩjbj = N . However, the total storage
space that is offered by peers is limited, so it is not always
feasible for each file to be replicated by all peers. This implies
the need of determining a suitableΩj for each filej from the
angle of overall replication system.

More generally, we can formulate the problem as to seek
an erasure-coded block assignment policy. We define the repli-
cation matrixR = [ri,j]N×M , whereri,j indicate whether an
erasure-coded block of filej is assigned to peeri:

ri,j =

{

1 : if peer i stores a block of filej
0 : otherwise

where

i = 1, 2, . . .N

j = 1, 2, . . .M

Obviously, peeri cannot store more than its storage capacity
si:

M
∑

j=1

ri,j ≤ si ∀i (5)

The number of replica blocks of filej stored in the system is
equal tokj :

N
∑

i=1

ri,j = kj = bjΩj ∀j (6)

A replica placementR is feasible only if it satisfies both
conditions 5 and 6.

Let rj denote thejth column vector of the replica placement
matrix R, which then gives the subset of peers that replicate
file j. We select the availability of peers who replicate filej
(i.e., ri,j = 1), denote it asp[rj]. Then the availability of filej
can be readily computed as in equation 1:

Aj = A(p[rj], bj , kj)

Based on this, we are able to rigorously define the replication
resource allocation problem as to find an optimalR, where the
optimality condition is defined by certain system performance
metrics.

E. Performance metrics

In order to evaluate the replication algorithms systematically,
we employ two performance metrics: the overall expected file
availability E[A] and the variance of file availabilityvar[A].
The expectation measures how well the peers replicate, while
the variance serves as a fairness measurement of the achieved
file availability distribution.

Due to storage limitation, it happens that some files cannot be
replicated at all. Although users may be able to get access toan
unreplicated file from the peer who shares it, provided the entire
original copy is retained, the file in discussion is still considered
to have0 file availability. That is to say, the contribution of the
original copy is excluded. The reason behind this is to extract the

file availability achieved by replication from the dependence on
availability of the original copy. This promises a more explicit
performance evaluation of the replication algorithms. In fact, it
is true that peers may not always keep the files they share. In
addition, when computing the expectation and variance of the
file availability distribution, all files are assumed to haveequal
weight.

III. D ECENTRALIZED DECISIONS

In fact, similar resource allocation problems were considered
as combinatorial optimization problems in previous studies.
They were invariably proved as NP-complete, and coupled
with some heuristic solutions, as in [14], [15]. Normally, such
heuristic solutions were run by a central agent that had all the
necessary system parameters.

However, in a typical P2P system, there might be a huge
number of peers whose participations are not synchronized,
making timely collection of the system parameters from all peers
intractable. Even if it is possible to collect all the parameters
needed, it would be very time consuming for a central agent
to solve this problem and distribute solutions to all other peers.
Therefore, we focus on decentralized solutions that offer each
peer autonomous operations.

A. Writable peer set

P2P replication systems are constituted by connected peers.
Unlike traditional centralized replication system like RAID,
peers in a P2P replication system may not be aware of the
presence ofall other peers in the system. For example, random
peers’ connections in Gnutella, together with limited flood-
ing search, essentially limit the number of inter-peer connec-
tions [23].

We characterize the limited information available to each peer
by introducingdegree of connectivityfor a peer. This is not
physical connectivity, but actually, the logical reachability of a
peer in terms of asking other peers to help it replicate a file.In
this sense, a replication system with an indexing server, which
allows each peer to know of all other peers’ existence, can
be considered as a replication system with100% connectivity,
despite the fact that peers are not directly connected to each
other.

Given a degree of connectivity, we define areachable peer set
of peeri as the set of peers that peeri can potentially reach for
replication. However, a peer can either use its entire reachable
peer set or randomly choose a subset from it when actually
performing replications. We further name the peer set that peer
i uses for replication thewritable peer setPi. And we assume
that no peer is left isolated in the system, therefore:

P = ∪iPi

As described before, each peer requires several types of
information from other peers in the writable peer set to facilitate
making replication decisions. Such information can be encap-
sulated in the control protocol messages of a P2P system (such
as the ping-pong messages in Gnutella), or can be transmitted
in a separate protocol message. For each peeri′ in the writable

peer set of peeri, we define three types of information to be
conveyed fromi′ to i.

1) The storage space offered by peeri′ for replication, i.e.
si′ .

2) The total size of files that peeri′ requests to replicate, i.e.
∑

j∈Fi′
fj .

3) Online availability of peeri′, i.e. pi′ .

Note that peeri has to make a “blind” decision if none of these
information is available. Therefore, we assume that at least the
first two types of information can be estimated by any peer and
delivered readily to other peers. The third type of information,
a peer’s online availability, cannot be assumed to be always
available because it is difficult to be measured accurately,even
by the peer itself [24].

B. Stretch factor estimation

As discussed in section II-D, a feasible replica placement
solution must satisfy the storage constraint, namely, all created
blocks must fit into the storage space offered by the peers.
To ensure this feasibility in a decentralized manner, each peer
simply collects the pertinent information from its writable peer
set and estimates suitable stretch factors for its files. Thestretch
factor Ω, which controls the amount of redundancy applied to
a file through erasure coding, and hence the amount of storage
overhead required for replicating the file, is defined as the ratio
of storage required with versus without erasure coding.

The storage space available in a peeri’s writable peer set is:

Si =
∑

i′∈Pi

si′ (7)

The total size of files that need to be replicated is:

Fi =
∑

i′∈Pi

∑

j∈Fi′

fj (8)

The ratio of these two parameters gives an estimate of the stretch
factor, i.e.

Ωi =
Si

Fi

(9)

In order to avoid incorrect estimation of the stretch factor, we
employ thelocking phasestrategy. To be specific, once peeri
begins the replication process (including estimation ofΩi), all
peers in its writable peer setPi are set to be locked. While in the
locking phase, a peer is “invisible” to other peers in the system
except for peeri, implying that a peer in locking phase cannot
participate in other peers’ replication process except forpeer
i’s. Any other peer who wants to include peers currently locked
in its own writable set should wait until peeri finishes, that is,
when those peers are released. The locking phase strategy will
definitely prevent the situation that two peers having common
elements in their writable sets replicate simultaneously,which
would otherwise result in inaccurate estimation of the stretch
factors. Therefore, each peer in our system will have a phase
indicator to indicate whether it is in the locking phase. When
a peer decides its writable set, the locked peers will be filtered
unless it is willing to wait until they are released.

IV. H EURISTIC REPLICATION ALGORITHMS

Three decentralized heuristic algorithms are described inthis
section. The first one israndom algorithm in which peers
assign the erasure-coded blocks randomly to their writable
peer set. The second one isgroup partition algorithmwhere
peers replicate files in a way to minimize the variance of the
resultant file availability distribution. The third one ishighest
available first (HAF) algorithm, which is basically a greedy
algorithm that tries to satisfy an estimated availability target.
In these algorithms, each peer operates independently, based on
the storage resources and information provided by peers in its
writable peer set.

A. Random algorithm

Generally, the availability of a file depends on (a) how much
redundancy is applied by erasure coding, which is measured in
terms of the stretch factor of that file, and (b) the availability of
those peers who replicate the erasure-coded blocks of that file.
The random algorithm tries to give all files the same stretch
factor while assigning randomly selected peers to replicate
the erasure-coded blocks. This is a simple yet reasonably fair
algorithm because it does not require any knowledge of peer
availability, and gives each file the same stretch factor andequal
opportunity in selecting peers. The random algorithm can be
easily implemented in a distributed manner. Each peer executes
the following two steps.

The random algorithm

Writable peer set estimation:
1. Peeri chooses the writable peer setPi.
2. All peers inPi are “locked”.
3. EstimateSi =

P

i′∈Pi
si′ andFi =

P

i′∈Pi

P

j∈Fi′
fj .

4. EstimateΩi = Si

Fi
.

To replicate filej:
5. Divide file j into bj blocks so thatfj = bj Γ.
6. Apply erasure code to createkj = Ωibj blocks.
7. IF peeri cannot findkj peers with available storage space, skip

replicating this file.
8. ELSE peeri randomly pickskj peers fromPi to store the

erasure-coded blocks of filej.
Update available storage space of thesekj peers.

9. Peers inPi are released.

Storage allocation: First, each peeri calculates the total
storage space offered (Si) and the total size of all files to be
replicated by peers (Fi) in its writable peer set. Peeri then
estimates the stretch factorΩi for all files j ∈ Fi by equation 9
and applies this stretch factor to createkj = Ωibj erasure-coded
blocks for each filej ∈ Fi. This stretch factorΩi estimates how
much storage space each file (in its writable peer set) can use
on average. If all peers cooperate and follow this estimation, it
is very likely that the storage space will not be overused.

Replica placement:After creating the erasure-coded blocks,
peer i randomly pickskj peers, whose storage space is not
exhausted, in its writable peer setPi. Erasure-coded blocks of
file j are then assigned to these peers. Peeri stops the replication
process when all its files are replicated, or when storage space
in the writable peer set runs out.

B. Group partition algorithm

The random algorithm allows peer to independently estimate
a “fair” stretch factor for replication, yet the random replica
placement step introduces a high variance to the resultant file
availability. Some files may be “lucky” when their erasure-coded
blocks are assigned to highly available peers, while there will
be “unlucky” files whose blocks are replicated by peers with
low availability. The group partition algorithm tries to minimize
the variance of the file availability distribution based on peer
availability information. It also has two steps:

Storage allocation:Peeri allocates storage space in the same
way as in the random algorithm. Peeri therefore generateskj =
Ωibj erasure-coded blocks for each filej, whereΩi is given by
equation 9.

Replica placement: Assume peeri generateskj erasure-
coded blocks for filej. It first collects peer availability infor-
mation from all peers in its writable peer set, and then sortsthe
peers (who has available storage space) in descending order
according to their availability. The ordered peer set is then
logically partitioned intokj groups {g1, g2, . . . , gkj

} so that
groupg1 contains the highest available peers andgkj

contains
the lowest available peers. Peeri then randomly selects a peer
from each group and assigns an erasure-coded block to that
selected peer. The replication process terminates when allfiles
of peeri are replicated, or when storage space in the writable
peer set runs out.

The group partition algorithm

Writable peer set estimation:
1. Peeri chooses the writable peer setPi.
2. All peers inPi are ”locked”.
3. EstimateSi =

P

i′∈Pi
si′ andFi =

P

i′∈Pi

P

j∈Fi′
fj .

4. EstimateΩi = Si

Fi
.

To replicate filej:
5. Divide file j into bj blocks such thatfj = bj Γ.
6. Apply erasure code to createkj = Ωibj blocks.
7. IF peeri cannot findkj peers with available storage space, skip

replicating this file.
8. ELSE:

8.1 Order the peers with available storage inPi in descending
order according to their availability. Then partition the peers
into kj groups.

8.2 Randomly select a peer in each group and assign an
erasure-coded block to that peer.
Update available storage space of these peers.

9. Peers inPi are released.

C. Highest available first (HAF) algorithm

The highest available first (HAF) algorithm tries to replicate
each file to achieve a target availabilityA∗. There are different
ways to achieve such a target, for example, by trying to use more
peers with low availability, or to use as few higher available
peers as possible. The HAF algorithm takes the latter approach.

Theoretically, a suitable target file availabilityA∗ can only be
determined by the global knowledge of all file sizes, the storage
space offered and the availability information of all peersin the
system. This obviously cannot be assumed for a decentralized
algorithm. Instead, we will describe an associated algorithm for

dynamically computing the value ofA∗ based on the limited
knowledge available to each peer. The complete algorithm has
the following steps:

Initialization: Before replicating the first file, peeri initial-
izes its file availability targetA∗ as follows. First, it computes
the estimated stretch factorΩi for its writable peer set by using
equation 9. Then it collects the file size and peer availability
information from its writable peer set, and computes the average
number of blocks per file before applying erasure codeb and
average peer availabilityp. Then it sets the initial value ofA∗

based onΩi andb, assuming all peers have the same availability
p.

Tentative replica placement:To replicate filej, peeri first
orders the peers (with available storage space left) in its writable
peer set in descending order according to their availability. It
then divides filej into bj blocks wherefj = bjΓ. No erasure
coding is applied at this stage and hencekj ← bj . Next, it
selectskj peers in the ordered peer set, starting from the highest
available peer first, and computes the file availabilityAj of file
j using equation 1, assuming these highest available peers are
used to replicate filej.

Comparing availability with target: The computed file
availability is compared to the targetA∗. If Aj < A∗, peer
i will increase the storage overhead for filej by adding an
extra erasure code redundancy to createkj ← bj + 1 blocks.
Once again, it selectskj highly available peers in the ordered
peer set, and computes a new file availabilityAj . This whole
process is repeated untilAj > A∗.

Replica placement:If file j gets a file availability ofAj >
A∗ from the comparing step, peeri then will createkj erasure-
coded blocks for filej and distribute them to the selectedkj

peers. However, if all peers in the writable peer set are selected
and yetAj < A∗, peeri then will create and distribute each
peer (with enough remaining storage) in its writable peer set
with one erasure-coded block of filej. The replication process
terminates when all files of peeri are replicated, or when storage
space in the writable peer set runs out.

V. EVALUATION OF ALGORITHMS

The performance of above algorithms is evaluated by simu-
lations. We will discuss our simulation setups first, and then the
simulation results.

A. Simulation Setup

We simulate a replication system with 100 peers that are
randomly linked. The connectivity of the network is controlled
by a parameterm ∈ [0, 1], termedconnectivity threshold. Any
two peers in the system are linked if a uniformly generated
random number in[0, 1] is greater thanm. So the expected
number of links would beN(N −1)/2(1−m) = 4950(1−m).
These links are logical, and the link delays and transmission
costs are ignored in our model. We further name the parameter
(1 −m) the degree of connectivityof the system.

We are interested to find out how the algorithms perform
under different system parameters. Two kinds of peer availabil-
ity distributions are used in our simulations, namely,uniform
availability distribution andbimodal availability distribution.

The highest available first (HAF) algorithm

In initialization stage:
1. Peeri chooses the writable peer setPi.
2. All peers inPi are ”locked”.
3. EstimateSi =

P

i′∈Pi
si′ andFi =

P

i′∈Pi

P

j∈Fi′
fj .

4. EstimateΩi = Si

Fi
, the average peer availabilitȳp in Pi and the

average number of blocks per filēb.
5. Initialize A∗ based onΩi, b̄ and p̄.

To replicate filej:
6. Divide the file intobj blocks so thatfj = bjΓ.
7. Do not apply erasure code at this stage,kj ← bj .
8. Calculate the file availabilityAj based on thekj most available

peers with enough storage inPi.
9. WHILE Aj < A∗:

9.1 Increase the stretch factor and create one more erasure-coded
block, i.e.kj ← kj + 1.

9.2 Select the next most available peer to replicate.
9.3 Calculate the file availabilityAj .

10. IF all peers inPi have been selected andAj < A∗, replicate this
file by distributing each peer with one erasure-coded block.

11. ELSE IF the new file availabilityAj ≥ A∗, assign the
erasure-coded blocks to the selected peers.

12. Update the available storage of the peers who participate in
replication.

13. Peers inPi are released.

Simulation Peer availability Average storage Connectivity

S1.1 Uniform Ω∗ = 1.5 (1 −m) ∈ [0,1]
S1.2 Uniform Ω∗ = 2.0 (1 −m) ∈ [0, 1]
S1.3 Uniform Ω∗ = 2.5 (1 −m) ∈ [0, 1]
S2.1 Bimodal Ω∗ = 1.5 (1 −m) ∈ [0,1]
S2.2 Bimodal Ω∗ = 2.0 (1 −m) ∈ [0, 1]
S2.3 Bimodal Ω∗ = 2.5 (1 −m) ∈ [0, 1]

TABLE II

SIMULATION SETUPS

The uniform distribution, in which each peer availability is
uniformly distributed in [0, 1], assumes the peers are very
diverse in their online patterns. The bimodal distribution, in
contrast, is used to model two distinct types of peers, some of
them staying online for extended periods of time, while others
being usually offline.

In all simulations, the number of files to be replicated in
each peer is uniformly distributed in[0, 100], hence the expected
number of files in total is 5000 out of 100 peers’ participation.
The files are assumed to have similar sizes, if not exactly the
same. In our case, the common file size is set to be4 blocks
(each block is of sizeΓ) before applying erasure code.

To study the effects of storage capacity, we run simulations
with peers contributing different amount of storage spacesi for
replication. We define the system-wideaverage storage capacity
per file Ω∗ as the ratio of the total storage space offered by all
peers to the total size of all the files in the system:

Ω∗ =

∑

i∈P
si

∑

j∈F
fj

.

The exact storage space offered by each peer may not be the
same. Hence, we set our model in the way that the storage
offered by each peer is uniformly distributed in a certain range
according to different expected value ofΩ∗.

0 0.2 0.4 0.6 0.8 1
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

Connectivity

E
[A

]
(O

m
eg

a
=

1.
5)

Random
Group
HAF

(a)

0 0.2 0.4 0.6 0.8 1
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

Connectivity

V
ar

[A
]

(O
m

eg
a

=
1.

5)

Random
Group
HAF

(b)

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Connectivity

P
o

rt
io

n
 o

f
fi

le
s

re
p

lic
at

ed

Random
Group
HAF

(c)

Fig. 1. Simulation results forS1.1

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Connectivity

E
[A

]
(O

m
eg

a
=

2.
0)

Random
Group
HAF

(a)

0 0.2 0.4 0.6 0.8 1
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

Connectivity

V
ar

[A
]

(O
m

eg
a

=
2.

0)

Random
Group
HAF

(b)

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Connectivity

P
o

rt
io

n
 o

f
fi

le
s

re
p

lic
at

ed

Random
Group
HAF

(c)

Fig. 2. Simulation results forS1.2

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Connectivity

E
[A

]
(O

m
eg

a
=

2.
5)

Random
Group
HAF

(a)

0 0.2 0.4 0.6 0.8 1
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

Connectivity

V
ar

[A
]

(O
m

eg
a

=
2.

5)

Random
Group
HAF

(b)

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Connectivity

P
o

rt
io

n
 o

f
fi

le
s

re
p

lic
at

ed

Random
Group
HAF

(c)

Fig. 3. Simulation results forS1.3

To minimize simulation errors due to random perturbations,
each simulation is run200 times, and the average results are
reported. Table II summarizes the parameters of the simulation
model.

B. Simulation results

We first evaluate the performance of the three replication
algorithms using uniform peer availability distribution.Figures 1
- 3 show (a) the expectation (E[A]), (b) the variance (var[A])
of the file availability distribution, and (c) the portion offiles
replicated, against the degree of connectivity(1 −m) ∈ [0, 1]
when the replication system is contributing different amount of
storage spaceΩ∗ = {1.5, 2.0, 2.5}.

Three general patterns of behavior with these algorithms can
be observed from the results, independent of the average storage
capacityΩ∗. First, the increase in the degree of connectivity
improves the algorithms’ performance (in terms ofE[A]). This
means that the more connected the peers are, hence the more
global view of the replication system the peers have, the better
the performance is. In particular, the performance increases

sharply with degree of connectivity initially, indicatingthat
peers need to have a minimum level of knowledge about other
peers in the system (in our simulations, it is when the degree
of connectivity (1 − m) > 0.1 ∼ 0.2) so that peers can
find enough storage space to replicate files. When(1 −m) =
0.1, each peer on average has100 × 0.1 = 10 peers in its
writable peer set. Since each file occupies at least4 blocks of
storage space, having less than10 peers in the writable peer
set means a peer may fail to find a sufficient number of other
peers who have available storage (to replicate the given file).
The sharp increases invar[A] and portion of files replicated
(when (1 − m) increases from0 to 0.1) further support this
argument. Second, the group partition algorithm achieves lower
var[A] than that of the random algorithm and HAF algorithm,
especially when the storage space offered by peers is limited.
This result validates our expectation that partitioning the peers
in groups can replicate files in a fairer way. Third, in terms
of the portion of files replicated, the HAF algorithm converges
more quickly to100% than other algorithms because it makes

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Connectivity

E
[A

]
(O

m
eg

a
=

1.
5)

Random
Group
Random

(a)

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Connectivity

E
[A

]
(O

m
eg

a
=

2.
0)

Random
Group
HAF

(b)

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Connectivity

E
[A

]
(O

m
eg

a
=

2.
5)

Random
Group
HAF

(c)

Fig. 4. Simulation results for bimodal distribution

more elaborate scheduling when balancing the role of different
available peers in the system. That is producing less redundancy
using high available peers and more with lower available ones.
However, all three algorithms perform similarly well when the
number of connected peers in the system is large enough.

A very interesting observation is how the increase in the
storage resources affects the algorithms’ performance. When the
average storage capacity is low (Ω∗ = 1.5) , the HAF algorithm
outperforms the other two algorithms significantly in termsof
the E[A] (by near50%), as shown in Figure 1(a). However,
when the average storage capacity increases, the performance
difference gradually becomes insignificant, as shown in Fig-
ure 2(a) and Figure 3(a). WhenΩ∗ = 2.5, the performance
difference decreases to only about5% ∼ 15%, even though
the HAF algorithm can still achieve the highest expected file
availability.

Figure 4 shows the simulation results with bimodal peer
availability distribution. When comparing the achieved perfor-
mance for bimodal distribution versus uniform distribution, the
expected file availabilityE[A] of the former is usually about
5% ∼ 15% better than the latter. Hence we have a conjecture
that if the two sets of peers have the same average peer
availability but different variance, then the file replicated by the
set of peers with higher variance will achieve higher expected
file availability. In addition, for all three algorithms,var[A] is
generally higher than that using uniform availability distribu-
tion. This is not surprising because a higher peer availability
variance in bimodal availability distribution further increases
the divergence of file availability. However, the group partition
algorithm is still the most successful in minimizingvar[A] for
both distributions.

Furthermore, we also conduct extended simulations which
show that the HAF algorithm is even more useful in improving
file availability for the system with rare high available peers.

C. Discussion and future work

To summarize, the simulation results reveal the following
findings. First, we see that HAF algorithm in general can achieve
higher E[A], especially when peers share a small amount of
storage space for replication and when high available peersin
the system are rare. However, when peers increase their sharing,
we see that the difference between the algorithms become
insignificant. This observation has an important implication:
when a replication system has high storage capability, the choice

of replication algorithms does not make a lot of difference.In
that case, it probably makes sense to choose a simpler algorithm,
for example, the random algorithm. Second, the group partition
algorithm can achieve lower variance in file availability, hence
may be a good choice if fairness of file availability is im-
portant. Third, when comparing the simulation results between
using uniform availability distribution and bimodal availability
distribution, we observe that the increase in variance of peer
availability tends to improve the expected file availability for
all three algorithms.

There are still many interesting topics remained for further
work. In this paper, we have assumed astaticreplication system:
a fixed set of peers join the system and each of them replicates
a fixed set of files. In a real life system, peers continuously
join and leave; they may also remove old files and introduce
new files. These dynamics bring many interesting possibilities.
For example, if some peers leave permanently, how do we
redistribute the file replicas they stored in order to maintain
the file availability?

VI. CONCLUSION

In this paper, we address an important issue in P2P replication
systems: resource allocation. We demonstrate the difficulty of
resource allocation problem and formulate the optimization
problem as an integer programming problem.

Since the problem is computation-intensive and needs to be
solved in a decentralized manner, we propose three heuristic al-
gorithms for peers to make replication decisions independently.
In contrast to previous work, we consider heterogeneity in peer
availability in our modeling, which is a more realistic assump-
tion. The three algorithms differ in terms of the information
required and computational complexity and their performance
for different system parameters are evaluated using simulations.
Our results show that the difference among the performance of
different algorithms is insignificant when the storage resources
are abundant. However, if the storage resources are scarce,we
show that the HAF algorithm achieves the highest expected file
availability. Meanwhile, the group partition algorithm isable to
achieve a lower variance of file availability, which is beneficial
if fairness of file availability is an important consideration. We
also demonstrate how peer availability distribution affects the
resultant file availability distribution, which has not been studied
in previous work.

REFERENCES

[1] “Akamai.” [Online]. http://www.akamai.com/
[2] J. Y. B. Lee and W. T. Leung, “Design and analysis of a fault-tolerant

mechanism for a server-less video-on-demand system,” inProceedings of
International Conference on Parallel and Distributed Systems, 2002.

[3] E. K. Lee and C. A. Thekkath, “Petal: Distributed virtualdisks,” in
Proceedings of the 7th International Conference on Architectural Support
for Programming Languages and Operating Systems, 1996.

[4] J. Kubiatowicz, D. Bindel, Y. Chen, P. Eaton, D. Geels, R.Gummadi, S.
Rhea, H. Weatherspoon, W. Weimer, C. Wells, and B. Zhao, “Oceanstore:
An architecture for global-scale persistent storage,” inProceedings of ACM
ASPLOS, 2000.

[5] “Gnutella.” [Online]. http://www.gnutella.com/
[6] “WinMx.” [Online]. http://www.winmx.com/
[7] “Bittorrent.” [Online]. http://bitconjurer.org/BitTorrent/
[8] “Peercast.” [Online]. http://www.peercast.org/
[9] “Napster.” [Online]. http://www.napster.com/
[10] “Skype.” [Online]. http://www.skype.com/
[11] P. Golle, K. Leyton-Brown, I. Mironov, and M. Lillibridge, “Incentives

for sharing in peer-to-peer networks,” inProceedings of the 2001 ACM
Conference on Electronic Commerce, 2001.

[12] K. P. Eswaran, “Placement of records of a file and file allocation in a
computer network,” inProceedings of IFIP Conference, 1974.

[13] J. Kangasharju, J. Roberts, and K. W. Ross, “Object replication strategies
in content distribution networks,” inProceedings of the 6th International
Workshop on Web Content Caching and Distribution, 2001.

[14] M. J. G. Bo Li, G. F. Italiano, X. Deng, and K. Sohraby, “Onthe optimal
placement of web proxies in the Internet,” inProceedings of Infocom, 1999.

[15] L. Qiu, V. N. Padmanabhan, and G. M. Voelker, “On the placement of
web server replicas,” inProceedings of Infocom, 2001.

[16] V. Gopalakrishnan, B. Bhattacharjee, and P. Keleher, “Adaptive replication
in peer-to-peer systems,” inProceedings of The 24th International Confer-
ence on Distributed Computing Systems, 2004.

[17] B. -J. Ko and D. Rubenstein, “Distributed, self-stabilizing placement of
replicated resources in emerging networks,” inProceedings of The 11th IEEE
Conference on Network Protocols, 2003.

[18] E. Cohen and S. Shenker, “Replication strategies in unstructured peer-to-
peer networks,” inProceedings of ACM SIGCOMM, 2002.

[19] S. Tewari and L. Kleinrock, “Proprotional replicationin peer-to-peer
networks,” inProceedings of Infocom, 2006.

[20] K. Ranganathan, A. Iamnitchi, and I. Foster, “Improving data availability
through dynamic model-Driven replication in large peer-to-peer communi-
ties,” in Proceedings of The 2nd IEEE/ACM International Symposium on
Cluster Computing and the Grid, 2002.

[21] F. M. Cuenca-Acuna, R. P. Martin, and T. D. Nguyen, “Autonomous
replication for high avaibility in unstructured P2P systems,” in Proceedings
of The 22nd International Symposium on Reliable Distributed Systems, 2003.

[22] W. K. Lin, D. M. Chiu, and Y. B. Lee, “Erasure code replication
revisited,” in Proceedings of The 4th International Conference on Peer-to-
Peer Computing, 2004.

[23] M. Ripeanu, “Peer to peer architecture case study: Gnutella network,”
Technical Report, 2001.

[24] J. W. Mickens and B. D. Noble, “Predicting node availability in peer-
to-peer networks,” inProceedings of the ACM SIGMETRICS International
Conference on Measurement and Modeling of Computer Systems, 2005.

