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Abstract— Being autonomous and scalable, Peer-to-Peer systems If there is only a small number of files and peers in the
provide a paradigm for sharing files in the Internet. However replication system, one can centrally search for an optimal
different from conventional structured replication systems like g5 tion py enumerating all possible schemes. However, the
content distribution networks (CDN), peers in an unstructued luti . d tically when th bere
P2P system may have different, sometimes low, online avaligity, solu an SPace Increases dramatcally wi en_ e num _er - pe
and usually get only partial information about the resources and files increases, and therefore centralized algorithilis w
of the system. Therefore, how to achieve good system levelefii become computationally infeasible. We are concerned about
availability by autonomous peers is an important goal in P2P deploying decentralized algorithms for peers to collateesy
replication systems. In this paper, we investigate decerdtized and solve this resource allocation problem. It is assumed eaditgh

cooperative resource allocation algorithms in a class of F2systems thi that . ti hani ist in th
that provide replication service. We formulate this replication IS paper that some incentive mechanisms exist in thersyiste

problem as an optimization problem, and propose several haistic ~ avoid free-riding and to encourage peers’ cooperatiom gsli.
algorithms respectively. They include (a) a random algorihm, (b) a Three decentralized replication algorithms are studied:
group partition algorithm that relies on peers’ forming gro ups, and

() a greedy search algorithm based on an estimated systervel 1) A random algorithm that requires the least information
file availability target. We compare and evaluate these algithms from neighbor peers.
by simulations, and observe that each of them has advantages 2) A group partition algorithm that attempts to achieve an
depending on the system parameters. even file availability distribution using more partitioned
knowledge.
. INTRODUCTION 3) A greedy search algorithm based on the estimated system-

Peer-to-peer(P2P) applications have become tremendously '€Vel file availability target.
popular as a way of sharing data in the Internet. Existinthese algorithms are evaluated by simulations. It is ofeserv
P2P systems can be categorized into two groups: (a) a disat each can be useful depending on system parameters.
tributed system with central planning and deployment; (b) aThere has been a considerable amount of research work on
distributed system based on ad hoc participation. Examufiesppject replication to different locations or computers.[12],
(a) are content distribution networks (CDN) [1], servesle&leo the author studied the file allocation problem of replicatin
streaming systems [2] and distributed file storage syst&@}s [5 single file over a set of computers. The file is demanded
[4]. Examples of (b) include file swapping networks [5], [6]py various users who have different access costs to differen
application layer multicast services [7] and applicatiayer computers. The author proved that the optimal assignment of
multicast-based streaming [8]. Naturally, some systemmsbE the replicas to the computers that minimizes the total c®st i
considered as in-betweens, such as Napster [9] and Skype [Mb-complete. Authors in [13] studied the problem of repiiog:
where there are central directories or authenticationicesy objects optimally in content distribution networks, in whieach
In this paper, our interest is in viewing a class of P2P systerutonomous system (AS) replicates some objects and demands
as a mostly ad hoc replication system. In this system, eaeh pgbjects stored in other ASes at the same time. The optimality
has a number of files to share and alsmoperatesto offer of this replication is defined as the minimization of the aggr
storage space to replicate a collection of files. Howevegrpeinter-AS hop distance a request must transverse. They grove
are not online all the time. The ad hoc nature, determinifBat this optimization is NP-complete, and proposed some
how files are replicated, may potentially lead to poor angkntralized heuristic algorithms to solve the replicapoablem.
uneven file availability without proper coordination. Thfare, Web caching can also be regarded as a distributed replicatio
it is believed that file availability is an important issue evh etwork. In [14], the authors studied the problem of distiibg
deploying replication service in P2P systems. We interfinst 5 fixed set of web proxies in the Internet. There was a setup cos
as aresource allocation problerwhich includes the following jvolved when assigning a proxy to a potential site, as weka
two Issues: link cost for connecting any two potential sites. They medel
« Storage allocationto decide how many replicas can bahe network topologies as trees, and proposed a centralized
produced for each file upon the limitation of storage spacalgorithm to distribute the proxies with minimum total cost
« Replica placementto decide the set of peers who areAuthors in [15] also investigated the placement of a fixed set
going to store those replicas of each file so as to achieseweb server replicas to potential web sites. Instead afigusi
a reasonable level of file availability. tree-based models, they modeled the placement problem as a



. . Fi The set of files to be replicated in peer
K—med|an problemapd developed several centralized planem e The set of files in the systern® = U, 7,
algorithms to solve it. 2 Writable peer set of peer

Another approach can be found in [16], which focused on P The set of peers in the syste®, = [J; P
the problem of assigning file replicas according to the fitkes’ N Number of peers in the systemV = [P
dch teristics. The authors described a deceetiaiad M Number of files In the systemtl/ — ||
mand characterisucs. 1he authors I T Size of each erasure coded block
adaptive protocol to replicate files in a way that balancegese p Peer availability vector
load. A message-based protocol used to replicate resoirrces §= [[Sz]] 'l:}leer _Storafge Cé;pi}lcity
. . . =\|J/j lle size ot each Tilg
a replication network was developed by Iébal..[17]. In their b= [6,] | Number of blocksbeforearasure coding each Tig
model, each piece of resources is tagged with a color, and &g =10, | Storage overhead of each fje
distributed algorithm was developed for each node to operat k = [k;] | Number of blocksafter erasure coding each filg
with an attempt to maximize its own distance to a node that R:[ "}m'] ﬁfe,l""‘sb'_tl’_'te rep“tca pf'acemem T
. . . p[r; wvailability vector of peers replicating filg
holds an object with the same color. The algorithm evenguall —x— [A;] | File availability distribution

converged to an optimal allocation. Authors in [18] conside
assigning replicas in an unstructured P2P system, focuming
minimizing the expected search size of the search querkesr T
results showed that replicating files proportionally to siggiare
root of a file's demand popularity is an optimal replication
scheme. While ignoring the issue of search cost, authorkdh [
proved that having the number of file replicas proportional Each peer in this replication system is characterized bgethr
to their request rates can minimize the average downloadip@grameters. First, we denote the online availabjlityc [0, 1]
bandwidth. They showed that such replica distribution can s the proportion of the time peéstays online. When a peer is
achieved in a decentralized way by using LRU, with a systeamline, all the replicas it stores are available and acbkssy
performance close to optimal. other peers in the replication system. Therefore, the [hitiha

Our work in this paper differs from previous works inof retrieving the replicas stored in peéris equal to its
the following aspects. The problem addressed in [12], [14vailability p;. Second, peer has a set of files; that needs to
[15] was concerned with how to replicate a file so as tee replicated. We do not consider the bandwidth consumption
minimize transmission cost and link delay. [16] investeght between peers in this paper, and file replicas are assumesl to b
the problem of balancing server load by replication. And tressigned to other peers in a negligible amount of time. Ting th
replication objectives in [18] and [19] were to minimize @arameter is the amount of storage space that peéers for
search metric and downloading bandwidth respectively. As &plication purposes, denoted by. This shared storage space
orthogonal evaluation to the existing replication relastatiies, is made available to other peers in the system.
we put our focus on how to replicate a set of files so as to
optimize file availability. There has already been someaete B. Erasure code replication
dealing with this issue, such as [20], [21]. However, in our
model, peers are allowed to have different availability,jclih
is more general in comparison with previous models [12
[13], [15], [20]. Furthermore, we take erasure code refilica

TABLE |
SYSTEM PARAMETERS

Peers in this replication system adopt erasure code taetpli
les. In erasure code replication, a file is divided intblocks.
\ variable amount of erasure code redundancy is then added to
into account, which can degenerate to traditional repbcat these bIO(_:kS so that > b blocks are obtained in total, with each
and achieve better replication performance for certairiesys block having the same size as bef(_)re_. The erasure-codelo_bbloc
parameters [22]. Finally, our work differs from [21] in that®'® dependent on each other: Retne\amgb out Ofk blocks is
[21] tried to achieve a pre-determined availability targetr enough to. reassemble the original file. Authore in [22] ptdevi_
algorithms, on the other hand, try to optimize file availdypil a comparison bet""?e”_ erasure code rephcatlon and.traditlo
based on given resources. replication (i.e. replicating a complete flle)_. Th_ey aIs_om)ed
out that whenb = 1, erasure code replication is equivalent to
Il. P2PREPLICATION SYSTEM traditional replication. Therefore, there is no loss in gyatity

In this section, we interpret a P2P network as a replicatidy assuming the use of erasure code. _
system, in which peers cooperate to replicate files for eachHere we assume that the blocks created are assignéd to

other with the use of erasure coding. Table | summarizes thiferent independent peers. The file availabilityis defined

parameters used in our model. as the probability of recovering the original (and compldile
based on these stored blocks. As one peer stores one single
A. Peers block of a file, this availability is equal to the probabilitf

In our model, peers are assumed to cooperate aiming at f@/ing at leasb out of & peers online:
overall replication goal. When a peer joins the system, it is L
willing to offer a certain amount of storage resources fdreot A bk :

- ) . - i}, b, = P{h peers are onlin 1
peers to place their file replicas. In return, it can alsorithiste (i} ) Z {hp e @
its file replicas to other peers, thereby increasing aviitialof
its own files. where{p;} represents the online availability of thepeers.

h=b



C. Estimation of file availability shared storage spagg, and this is generally true for current

The availability of a file after replication is comprised offommodity storage products. _
two parts: the erasure-coded blocks stored in the networkFTom the angle of individual filef2; should be as large
and the entire file in the original peer, provided it is kep®S p955|ble |n.0rd.er to maximize file availability. The lage
there. The probability of having exactly peers/erasure-codedP0Ssible value is given b;b; = N. However, the total storage
blocks available equals to the sum of the probabilities of a§Pace that is offered by peers is limited, so it is not always

permutation that havé peers online out of: feasible for each file to be replicated by all peers. This ie®pl
. the need of determining a suitallly; for each filej from the
P{h peers are online= angle of overall replication system.
p1p2 - pr(l — pry1)(1 — pry2) ... (1 —pp)+ More generally, we can formulate the problem as to seek

p2p3 - Phrt(L = prga) o (L= pe) (L —p1) + ...+ an erasure-coded block assignment policy. We define thé repl
cation matrixR = [r; ;]nxa, Wherer; ; indicate whether an

Pr—ht1Ph—nt2 PRl =p1)(1=p2) .- (L= Pron) oo coded block of filg is assigned to peer

)
Since each peer in the system may have a different online
probability, it will be too expensive to calculate the exéitd
availability. Therefore, we use the average peer avaitglils where
an estimation instead. Hence, the file availability gainemnf

1 : if peer: stores a block of filej
Tij = . .
0 : otherwise

erasure coding can be calculated as: ¢ = 1,2...N
. j o= 1,2,...M
A({pi}, b k) = Z ol gl (1= p)k (3) Obviously, peeri cannot store more than its storage capacity
h=b St
M
wherep; refers to the average peer availability of $et}. By Zr' e )
including the original copy, the total file availability bemes = b=

k . —_ . .
o The number of replica blocks of fil¢ stored in the system is
A({pi}vba k) = 1_(1_pi)' Z Cl}cl'(l_pi)h'pik 4 (4) equal tok;:
h=k—b+1 '

N
wherep; is the availability of the peer who shares this file. D orig=ky =0 Vi (6)
=1

D. Problem formulation A replica placementR is feasible only if it satisfies both

A real world P2P replication system is complicated to modelonditions 5 and 6.
Part of the problem comes from the complexity of network Letr; denote thej*" column vector of the replica placement
topology itself, while others, for example, from networkndyn- matrix R, which then gives the subset of peers that replicate
ics and protocol messages. In this paper, we propose aaeplfle j. We select the availability of peers who replicate fjle
tion model to abstract the above aspects. Although the mo@eé_,riyj = 1), denote it ap|r;]. Then the availability of filej
is simple, it is capable of illustrating the difficulties iesource can be readily computed as in equation 1:

allocation in a real world P2P replication system, spedifica

heterogeneity of peer availability and the complexity giliea Aj = A(plr;], by, k;)

assignment. o . _ ~Based on this, we are able to rigorously define the replinatio
Let us consider a replication system with a fixed populatiqgsource allocation problem as to find an optiRalwhere the

of P peers whose availability distribution js Each peet has optimality condition is defined by certain system perforeen
a set of filesF; to replicate. The set of all files to replicate inmetrics.

the system isF = U;F;. We denote the number of peers as _
N =|P| and the number of files a&/ = |F]|. E. Performance metrics

Before replicating, a filg € F is first divided intob; blocks, In order to evaluate the replication algorithms systenadijic
with each block in the size df. Hence,f; = b; I'". In addition, we employ two performance metrics: the overall expected file
all files are segmented by the same block dizeand erasure availability E[A] and the variance of file availabilityar[A].
coding produces redundancy without changing the block siZEhe expectation measures how well the peers replicate gwhil
This meansf;/f;; = b;/b; for any two filesj andj’. For a the variance serves as a fairness measurement of the athieve
given file j € F;, peeri needs to decide how much erasuréle availability distribution.
coding redundancy should be added, which is denoted by théDue to storage limitation, it happens that some files caneot b
stretch factor(2. For a particular stretch factél;, peer: creates replicated at all. Although users may be able to get accean to
k; = Q;b; erasure-coded blocks, to be assigned talifferent unreplicated file from the peer who shares it, provided thieen
peers. For simplicity, we assume the storage space offereddsiginal copy is retained, the file in discussion is still safered
peeri is always in units of the block sizE. This assumption to have0 file availability. That is to say, the contribution of the
is justified when the block siz€ is comparatively small with original copy is excluded. The reason behind this is to extree



file availability achieved by replication from the dependen peer set of peef, we define three types of information to be
availability of the original copy. This promises a more égipl conveyed from’ to <.

performance evaluation of the replication algorithms.dotf it 1) The storage space offered by peefor replication, i.e.
is true that peers may not always keep the files they share. In

addition, when computing the expectation and variance ef th 2y The total size of files that peérrequests to replicate, i.e.
file availability distribution, all files are assumed to hagual Yier, I
. ] il Y
weight. 3) Online availability of peet’, i.e. p;.
I1l. DECENTRALIZED DECISIONS Note that peei has to make a “blind” decision if none of these

o ) ~information is available. Therefore, we assume that att léees
In fact, similar resource allocation problems were conside st two types of information can be estimated by any peer and
as combmat_orlal_ optimization problems in previous stadiegg|ivered readily to other peers. The third type of inforiomg
They were invariably proved as NP-complete, and couplgdpeer's online availability, cannot be assumed to be always

with some heuristic solutions, as in [14], [15]. Normalluch  gyajlable because it is difficult to be measured accurateiyn
heuristic solutions were run by a central agent that hadhall tby the peer itself [24].

necessary system parameters.
However, in a typical P2P system, there might be a huge Stretch factor estimation
number of peers whose participations are not synchronized

making timely collection of the system parameters from a# . . .
9 y Y P i solution must satisfy the storage constraint, namely, r@hied

intractable. Even if it is possible to collect all the paraens locks must fit into the storade space offered by the peers
needed, it would be very time consuming for a central age$tO ge sp y P :

to solve this problem and distribute solutions to all otheers. 0 erlwsure” thls Iﬁas'b'“tt.y mta} (fjecen;c.rallzfed m_?nne.rt, e p
Therefore, we focus on decentralized solutions that oféahe simply collects the pertinent information from its writapeer

peer autonomous operations set and estimates suitable stretch factors for its files.sTite¢ch
’ factor 2, which controls the amount of redundancy applied to
A. Writable peer set a file through erasure coding, and hence the amount of storage
L _ overhead required for replicating the file, is defined as #tior
P2P replication systems are constituted by connected 'pe%?sstorage required with versus without erasure coding.

Unllke.tradmonal cer_‘ltralllzed replication system like FRA The storage space available in a péenwritable peer set is:
peers in a P2P replication system may not be aware of the

As discussed in section II-D, a feasible replica placement

presence oéll other peers in the system. For example, random S; = Z sy (7)
peers’ connections in Gnutella, together with limited flood P
ing search, essentially limit the number of inter-peer @mn ) ] ) )
tions [23]. The total size of files that need to be replicated is:
We characterize the limited information available to eae#r
¢ F=3 35 ®)

by introducingdegree of connectivitfor a peer. This is not
physical connectivity, but actually, the logical reachiapiof a
peer in terms of asking other peers to help it replicate alfile. The ratio of these two parameters gives an estimate of teektr
this sense, a replication system with an indexing serveigtwh factor, i.e.

i EP; JEF,

allows each peer to know of all other peers’ existence, can QO — Si )
be considered as a replication system witi®9% connectivity, "F
despite the fact that peers are not directly connected th eac

In order to avoid incorrect estimation of the stretch facioe
employ thelocking phasestrategy. To be specific, once peer
begins the replication process (including estimatiorfy, all
peers in its writable peer s@; are set to be locked. While in the

other.
Given a degree of connectivity, we defineeachable peer set
of peeri as the set of peers that peetan potentially reach for

replication. However, a peer can either use its_entire iaaleh locking phase, a peer is “invisible” to other peers in thetays
peer se_t or randomly choose a subset from it when actuaé? cept for peei, implying that a peer in locking phase cannot
performlng rep_hca_tlons. We further name the peer set that p participate in other peers’ replication process exceptpeer
i uses for rep_hcatlo.n thwntqble peer selP;. And we assume i's. Any other peer who wants to include peers currently locke
that no peer is left isolated in the system, therefore: in its own writable set should wait until peéffinishes, that is,
P =UP; Whgr! those peers are relea}sed. The locking phasg stratégy wi
definitely prevent the situation that two peers having commo
As described before, each peer requires several typesetdments in their writable sets replicate simultaneoustyjich
information from other peers in the writable peer set tolfiate would otherwise result in inaccurate estimation of thetstre
making replication decisions. Such information can be pncdactors. Therefore, each peer in our system will have a phase
sulated in the control protocol messages of a P2P systerh (simicator to indicate whether it is in the locking phase. Whe
as the ping-pong messages in Gnutella), or can be trandmittepeer decides its writable set, the locked peers will badite
in a separate protocol message. For each faarthe writable unless it is willing to wait until they are released.



IV. HEURISTIC REPLICATION ALGORITHMS

Three decentralized heuristic algorithms are describeHign

B. Group partition algorithm
The random algorithm allows peer to independently estimate

section. The first one isandom algorithmin which peers a “fair” stretch factor for replication, yet the random regl
assign the erasure-coded blocks randomly to their writaléacement step introduces a high variance to the resultant fi
peer set. The second one gsoup partition algorithmwhere availability. Some files may be “lucky” when their erasuded
peers replicate files in a way to minimize the variance of tHdocks are assigned to highly available peers, while thale w
resultant file availability distribution. The third one éghest be “unlucky” files whose blocks are replicated by peers with
available first (HAF) algorithm which is basically a greedy low availability. The group partition algorithm tries to niinize

algorithm that tries to satisfy an estimated availabiligyget.

the variance of the file availability distribution based osep

In these algorithms, each peer operates independentbgilmas availability information. It also has two steps:
the storage resources and information provided by peersin i Storage allocation:Peer; allocates storage space in the same

writable peer set.

A. Random algorithm

way as in the random algorithm. Peeherefore generatds =
Q;b; erasure-coded blocks for each fjlewhere(; is given by
equation 9.

Generally, the availability of a file depends on (a) how much Replica placement: Assume peeri generatesk; erasure-
redundancy is applied by erasure coding, which is measureccbded blocks for filej. It first collects peer availability infor-

terms of the stretch factor of that file, and (b) the availgbof

mation from all peers in its writable peer set, and then gbes

those peers who replicate the erasure-coded blocks of teat fheers (who has available storage space) in descending order
The random algorithm tries to give all files the same stretefecording to their availability. The ordered peer set isnthe

factor while assigning randomly selected peers to re@icabgically partitioned intok; groups {g1, g, - - .

.9k, } SO that

the e_rasure-coded l_)locks. This is a simple yet reasonably fgroup g, contains the highest available peers and contains
algorithm because it does not require any knowledge of page lowest available peers. Peethen randomly selects a peer

availability, and gives each file the same stretch factoreandl

from each group and assigns an erasure-coded block to that

opportunity in selecting peers. The random algorithm can lelected peer. The replication process terminates whefiiesll
easily implemented in a distributed manner. Each peer é#sclof peeri are replicated, or when storage space in the writable

the following two steps.

The random algorithm

Writable peer set estimation:
1. Peer: chooses the writable peer sgt.
2. All peers inP; are “locked”.
3. EstimateS; =3, cp, s andFs =32 cp, e, fi-
4. EstimateQ); = %
To replicate filej: '
5. Divide file j into b; blocks so thatf; = b; T
6. Apply erasure code to creatg = €2;b; blocks.
7. IF peeri cannot findk; peers with available storage space, skip
replicating this file.
8. ELSE peeri randomly picksk; peers fromP; to store the
erasure-coded blocks of filg
Update available storage space of thégepeers.
9. Peers inP; are released.

Storage allocation: First, each peel calculates the total

peer set runs out.

The group partition algorithm

Writable peer set estimation:
1. Peer; chooses the writable peer sgt.
2. All peers inP; are "locked”.
3. EstimateS; =3,/ cp, sy andFy =3,/ cp. Zje}‘i, fi-
4. EstimateQ); = %
To replicate filej: '
5. Divide file j into b; blocks such thaff; = b; T
6. Apply erasure code to creakg = €2;b; blocks.
7. IF peeri cannot findk; peers with available storage space, skip
replicating this file.
8. ELSE:

8.1 Order the peers with available storageFnin descending
order according to their availability. Then partition theeps
into k; groups.

8.2 Randomly select a peer in each group and assign an
erasure-coded block to that peer.

Update available storage space of these peers.
9. Peers inP; are released.

storage space offered) and the total size of all files to be
replicated by peersk,) in its writable peer set. Peerthen
estimates the stretch facty; for all files j € F; by equation 9 _ ] ] _
and applies this stretch factor to crete= Q;b; erasure-coded C- Highest available first (HAF) algorithm
blocks for each filgj € F;. This stretch factof?; estimates how  The highest available first (HAF) algorithm tries to reptea
much storage space each file (in its writable peer set) can eseh file to achieve a target availabilid*. There are different
on averagelf all peers cooperate and follow this estimation, itvays to achieve such a target, for example, by trying to usemo
is very likely that the storage space will not be overused. peers with low availability, or to use as few higher avaitabl
Replica placement:After creating the erasure-coded blockspeers as possible. The HAF algorithm takes the latter approa
peerd randomly picksk; peers, whose storage space is not Theoretically, a suitable target file availabilid* can only be
exhausted, in its writable peer sBf. Erasure-coded blocks of determined by the global knowledge of all file sizes, theagjer
file j are then assigned to these peers. Pstaps the replication space offered and the availability information of all pelerghe
process when all its files are replicated, or when storageespaystem. This obviously cannot be assumed for a decentlalize
in the writable peer set runs out. algorithm. Instead, we will describe an associated algoritor



dynamically computing the value of* based on the limited The highest available first (HAF) algorithm

knowledge available to each peer. The complete algorithen hainitialization stage:

the following steps: 1. Peeri chooses the writable peer sgf.
Initialization: Bef licati the first fil rinitial 2. All peers inP; are "locked”.
nitalization: efore replicating tne first tie, peerinitial- 3. EstimateS; = Zz ‘e, S andF; =, rep: de}', 5.
izes its file availability targetd* as follows. First, it computes Estimate; — 52, the average peer availabili/in ; and the

the estimated stretch factf); for its writable peer set by using average number’ of blocks per file
equation 9. Then it collects the file size and peer availgbili 5. Initialize A* based orf2;, b and .
information from its writable peer set, and computes theaye To replicate file;:
ber of blocks per file before applying erasure cédend 6. Divide the file intob; blocks so thalf, = b, T
number o p pplying 7. Do not apply erasure code at this stagg.— b;.
average peer availability. Then it sets the initial value ofi* 8. Calculate the file availabilityd; based on thé:; most available

based orf); andb, assuming all peers have the same availability =~ Peers with enough storage ;.
- 9. WHILE 4; < A*:

D ] ] ) ) ] 9.1 Increase the stretch factor and create one more eresdee-
Tentative replica placement: To replicate filej, peeri first block, i.e.k; « kj + 1.
orders the peers (with available storage space left) iniitsiale 9.2 Select the next most available peer to replicate.
tin d di der according to their availsbilit 9.3 Calculate the file availabilityd ;.
peer S_e_ In escen Ing or g i 10. IF all peers inP; have been selected antl, < A*, replicate this
then divides filej into b; blocks wheref; = b,I". No erasure file by distributing each peer with one erasure-coded block.
codlng is apphed at thls stage and herk;e<— b Next, it 11. ELSE IF the new file availabilityd; > A*, assign the

erasure-coded blocks to the selected peers.
selectsk; peers in the ordered peer set, starting from the highest |, Update the available storage of the peers who participat

available peer first, and computes the file availability of file replication.
4 using equation 1, assuming these highest available peers ar 13- Peers inP; are released.
used to replicate filg.

Comparing availability with target: The computed file
availability is compared to the target*. If Aj < A*, peer | Simulation | Peer availability | Average storage]  Connectivity |

i will increase the storage overhead for fijeby adding an SL1 Uniform Q=15 (1 —m) €[01]
tra erasure code redundancy to crefate— b; + 1 blocks. s12 Uniform =20 (1-m) €01
ex y ey 513 Uniform =25 [ (I_mehI
Once again, it selects; highly available peers in the ordered S2.1 Bimodal O =15 (T—m) €01
peer set, and computes a new file availability. This whole 52.2 Bimodal Q=20 (I1-m)el0,1
i ) * S2.3 Bimodal QF* =25 (I1-m)elo,1
process is repeated untl; > A*.
Replica placement:If file j gets a file availability ofd; > TABLE Il
A* from the comparing step, peéethen will createk; erasure- SIMULATION SETUPS

coded blocks for filej and distribute them to the selectéd

peers. However, if all peers in the writable peer set arectede

and yetA; < A*, peeri then will create and distribute each

peer (with enough remaining storage) in its writable peér sthe uniform distribution, in which each peer availability i
with one erasure-coded block of fie The replication process uniformly distributed in [0, 1], assumes the peers are very
terminates when all files of peéare replicated, or when storagediverse in their online patterns. The bimodal distributiam

space in the writable peer set runs out. contrast, is used to model two distinct types of peers, soine o
them staying online for extended periods of time, while athe
V. EVALUATION OF ALGORITHMS being usually offline.

The performance of above algorithms is evaluated by simu-In all simulations, the number of files to be replicated in
lations. We will discuss our simulation setups first, anchtttee  each peer is uniformly distributed A, 100], hence the expected
simulation results. number of files in total is 5000 out of 100 peers’ participatio
The files are assumed to have similar sizes, if not exactly the
same. In our case, the common file size is set tot liBocks

We simulate a replication system with 100 peers that afeach block is of siz&") before applying erasure code.
randomly linked. The connectivity of the network is conledl To study the effects of storage capacity, we run simulations
by a parametern € [0, 1], termedconnectivity thresholdAny with peers contributing different amount of storage spgac®r
two peers in the system are linked if a uniformly generatedplication. We define the system-wideerage storage capacity
random number in0, 1] is greater thanm. So the expected per file Q* as the ratio of the total storage space offered by all
number of links would beV(N —1)/2(1 —m) = 4950(1 —m). peers to the total size of all the files in the system:

A. Simulation Setup

These links are logical, and the link delays and transmissio S s
costs are ignored in our model. We further name the parameter Q= ﬂ
(1 —m) the degree of connectivitpf the system. Yjer i

We are interested to find out how the algorithms perforifhe exact storage space offered by each peer may not be the
under different system parameters. Two kinds of peer av&ila same. Hence, we set our model in the way that the storage
ity distributions are used in our simulations, namelpiform offered by each peer is uniformly distributed in a certainga
availability distribution andbimodal availability distribution. according to different expected value Qf.
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To minimize simulation errors due to random perturbationsharply with degree of connectivity initially, indicatinthat
each simulation is rur200 times, and the average results arpeers need to have a minimum level of knowledge about other
reported. Table || summarizes the parameters of the siioualatpeers in the system (in our simulations, it is when the degree
model. of connectivity (1 — m) > 0.1 ~ 0.2) so that peers can
find enough storage space to replicate files. Wker m) =
0.1, each peer on average hag0 x 0.1 = 10 peers in its

We first evaluate the performance of the three replicatiawitable peer set. Since each file occupies at ldasiocks of
algorithms using uniform peer availability distributidfigures 1 storage space, having less thah peers in the writable peer
- 3 show (a) the expectatiorE(Al]), (b) the variancewar[A]) set means a peer may fail to find a sufficient number of other
of the file availability distribution, and (c) the portion @ifes peers who have available storage (to replicate the give file
replicated, against the degree of connectiity- m) € [0,1] The sharp increases imr[A] and portion of files replicated
when the replication system is contributing different amioof  (when (1 — m) increases from0 to 0.1) further support this
storage spac@* = {1.5,2.0,2.5}. argument. Second, the group partition algorithm achiexesi

Three general patterns of behavior with these algorithms caqr[A] than that of the random algorithm and HAF algorithm,
be observed from the results, independent of the averag#gsto especially when the storage space offered by peers is timite
capacity 2*. First, the increase in the degree of connectivityhis result validates our expectation that partitioning freers
improves the algorithms’ performance (in termsifA]). This in groups can replicate files in a fairer way. Third, in terms
means that the more connected the peers are, hence the mpkRe portion of files replicated, the HAF algorithm convesg
global view of the replication system the peers have, theebetmore quickly to100% than other algorithms because it makes
the performance is. In particular, the performance in@gas

B. Simulation results
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Fig. 4. Simulation results for bimodal distribution

more elaborate scheduling when balancing the role of differ of replication algorithms does not make a lot of differenice.
available peers in the system. That is producing less rezhoyd that case, it probably makes sense to choose a simplerthalgori
using high available peers and more with lower availablesondor example, the random algorithm. Second, the group partit
However, all three algorithms perform similarly well whdret algorithm can achieve lower variance in file availabilitgnice
number of connected peers in the system is large enough. may be a good choice if fairness of file availability is im-
A very interesting observation is how the increase in thgortant. Third, when comparing the simulation results leemv
storage resources affects the algorithms’ performancerttie  using uniform availability distribution and bimodal avatility
average storage capacity is lo@*(= 1.5) , the HAF algorithm distribution, we observe that the increase in variance @i pe
outperforms the other two algorithms significantly in terofs availability tends to improve the expected file availapilior
the E[A] (by near50%), as shown in Figure 1(a). Howeverall three algorithms.
when the average storage capacity increases, the perfoemanThere are still many interesting topics remained for furthe
difference gradually becomes insignificant, as shown in Figvork. In this paper, we have assumestaticreplication system:
ure 2(a) and Figure 3(a). Whe* = 2.5, the performance a fixed set of peers join the system and each of them replicates
difference decreases to only abaiftb ~ 15%, even though a fixed set of files. In a real life system, peers continuously
the HAF algorithm can still achieve the highest expected fijein and leave; they may also remove old files and introduce
availability. new files. These dynamics bring many interesting possdslit
Figure 4 shows the simulation results with bimodal pedfor example, if some peers leave permanently, how do we
availability distribution. When comparing the achievedfpe redistribute the file replicas they stored in order to maimta
mance for bimodal distribution versus uniform distributigche the file availability?
expected file availabilityE[A] of the former is usually about
5% ~ 15% better than the latter. Hence we have a conjecture VI. CONCLUSION
that if the two sets of peers have the same average peer
availability but different variance, then the file repliedtby the In this paper, we address an important issue in P2P remlicati
set of peers with higher variance will achieve higher expactsystems: resource allocation. We demonstrate the difficflt
file availability. In addition, for all three algorithmsar[A] is resource allocation problem and formulate the optimizatio
generally higher than that using uniform availability disti- problem as an integer programming problem.
tion. This is not surprising because a higher peer avaitabil Since the problem is computation-intensive and needs to be
variance in bimodal availability distribution further ir@ases solved in a decentralized manner, we propose three heuaisti
the divergence of file availability. However, the group figEm  gorithms for peers to make replication decisions indepetiyle
algorithm is still the most successful in minimizingr[A] for In contrast to previous work, we consider heterogeneitygarp
both distributions. availability in our modeling, which is a more realistic asgu
Furthermore, we also conduct extended simulations whitibn. The three algorithms differ in terms of the informatio
show that the HAF algorithm is even more useful in improvingequired and computational complexity and their perforogan
file availability for the system with rare high available pee for different system parameters are evaluated using stinoka
) ) Our results show that the difference among the performahce o
C. Discussion and future work different algorithms is insignificant when the storage t@ses
To summarize, the simulation results reveal the followingre abundant. However, if the storage resources are saagce,
findings. First, we see that HAF algorithm in general caneahi show that the HAF algorithm achieves the highest expected fil
higher E[A], especially when peers share a small amount afailability. Meanwhile, the group partition algorithmasle to
storage space for replication and when high available peersachieve a lower variance of file availability, which is beni
the system are rare. However, when peers increase theingharif fairness of file availability is an important consideti We
we see that the difference between the algorithms becoalso demonstrate how peer availability distribution affethe
insignificant. This observation has an important implicati resultant file availability distribution, which has not Ipestudied
when a replication system has high storage capability,loéece in previous work.
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