Adaptive Channel Recommendation for Dynamic Spectrum Access

Xu Chen*, Jianwei Huang*, Husheng Li†

*Department of Information Engineering, The Chinese University of Hong Kong, Hong Kong
†Department of Electrical Engineering and Computer Science, The University of Tennessee Knoxville, TN, USA
email:{cx008,jwhuang}@ie.cuhk.edu.hk,husheng@eecs.utk.edu

Abstract—We propose a dynamic spectrum access scheme where secondary users recommend “good” channels to each other and access accordingly. We formulate the problem as an average reward based Markov decision process. We show the existence of the optimal stationary spectrum access policy, and explore its structure properties in two asymptotic cases. Since the action space of the Markov decision process is continuous, it is difficult to find the optimal policy by simply discretizing the action space and use the policy iteration, value iteration, or Q-learning methods. Instead, we propose a new algorithm based on the Model Reference Adaptive Search method, and prove its convergence to the optimal policy. Numerical results show that the proposed algorithm achieves up to 18% performance improvement than the static channel recommendation scheme and 10% performance improvement than the Q-learning method, and is robust to channel dynamics.

I. INTRODUCTION

Cognitive radio technology enables unlicensed secondary wireless users to opportunistically share the spectrum with licensed primary users, and thus offers a promising solution to address the spectrum under-utilization problem [1].

Designing an efficient spectrum access mechanism for cognitive radio networks, however, is challenging for several reasons: (1) time-variation: spectrum opportunities available for secondary users are often time-varying due to primary users’ stochastic activities [1]; and (2) limited observations: each secondary user often has a limited view of the spectrum opportunities due to the limited spectrum sensing capability [2]. Several characteristics of the wireless channels, on the other hand, turn out to be useful for designing efficient spectrum access mechanisms: (1) temporal correlations: spectrum availabilities are correlated in time, and thus observations in the past can be useful in the near future [3]; and (2) spatial correlation: secondary users close to one another may experience similar spectrum availabilities [4]. In this paper, we shall explore the time and space correlations and propose a recommendation-based collaborative spectrum access algorithm, which achieves good communication performances for the secondary users.

Our algorithm design is directly inspired by the recommendation system in the electronic commerce industry. For example, existing owners of various products can provide recommendations (reviews) on Amazon.com, so that other potential customers can pick the products that best suit their needs. Motivated by this, Li in [5] proposed a static channel recommendation scheme that encourages secondary users to recommend the channels they have successfully accessed to nearby secondary users. Since each secondary user originally only has a limited view of spectrum availability, such information exchange enables secondary users to take advantages of the correlations in time and space, make more informed decisions, and achieve a high total transmission rate.

The static recommendation scheme in [5], however, is rather static and does not dynamically change with network conditions. In particular, the static scheme ignores two important characteristics of cognitive radios. The first one is the time variability we mentioned before. The second one is the congestion effect. As depicted in Figure 1, too many users accessing the same channel leads to congestion and a reduced rate for everyone.

To address the shortcomings of the static recommendation scheme, in this paper we propose an adaptive channel recommendation scheme, which adaptively changes the spectrum access probabilities based on users’ latest channel recommendations. We formulate and analyze the system as a Markov decision process (MDP), and propose a numerical algorithm that always converges to the optimal spectrum access policy.

The main results and contributions of this paper include:

- Markov decision process formulation: we formulate and analyze the optimal recommendation-based spectrum ac-
cess as an average reward MDP.

- **Existence and structure of the optimal policy:** we show that there always exists a stationary optimal spectrum access policy, which requires only the channel recommendation information of the most recent time slot. We also explicitly characterize the structure of the optimal stationary policy in two asymptotic cases (either the number of users or the number of users goes to infinity).

- **Novel algorithm for finding the optimal policy:** we propose an algorithm based on the recently developed Model Reference Adaptive Search method [6] to find the optimal stationary spectrum access policy. The algorithm has a low complexity even when dealing with a continuous action space of the MDP. We also show that it always converges to the optimal stationary policy.

- **Superior Performance:** we show that the proposed algorithm achieves up to 18% performance improvement than the static channel recommendation scheme and 10% performance improvement than the Q-learning method, and is also robust to channel dynamics.

The rest of the paper is organized as follows. We introduce the system model and the static channel recommendation scheme in Sections II and III, respectively. We then discuss the motivation for designing an adaptive channel recommendation scheme in Section IV. The Markov decision process formulation and the structure results of the optimal policy are presented in Section V, followed by the Model Reference Adaptive Search based algorithm in Section VI. We illustrate the performance of the algorithm through numerical results in Section VII. We discuss the related work in Section VIII and conclude in Section IX. Due to space limitations, the details for several proofs are given in our online technical report [7].

II. SYSTEM MODEL

We consider a cognitive radio network with M independent and stochastically identical primary channels. N secondary users try to access these channels using a slotted transmission structure (see Figure 2). The secondary users can exchange information by broadcasting messages over a common control channel. We assume that the secondary users are located close-by, thus they experience the same channel availability and can hear one another’s broadcasting messages. To protect the primary transmissions, secondary users need to sense the channel states before the data transmission.

The system model is described as follows:

- **Channel State:** For each primary channel m, the channel state at time slot t is

$$S_m(t) = \begin{cases} 0, & \text{if channel } m \text{ is occupied by primary transmissions,} \\ 1, & \text{if channel } m \text{ is idle.} \end{cases}$$

- **Channel State Transition:** The channel states change according to independent and identical Markovian processes

1Please refer to [8] for the details on how to set up and maintain a reliable common control channel in cognitive radio networks.

(see Figure 3). We denote the channel state probability vector of channel m at time t as

$$p_m(t) \triangleq (Pr\{S_m(t) = 0\}, Pr\{S_m(t) = 1\}),$$

which follows a two-state Markov chain as

$$p_m(t) = p_m(t-1) \Gamma, \forall t \geq 1,$$

with the transition matrix

$$\Gamma = \begin{bmatrix} 1 - p & p \\ q & 1 - q \end{bmatrix}.$$

Note that when $p = 0$ or $q = 0$, the channel state stays unchanged. In the rest of the paper, we will look at the more interesting and challenging cases where $0 < p \leq 1$ and $0 < q \leq 1$. The stationary distribution of the Markov chain is given as

$$\lim_{t \to \infty} Pr\{S_m(t) = 0\} = \frac{q}{p + q}, \quad (1)$$

$$\lim_{t \to \infty} Pr\{S_m(t) = 1\} = \frac{p}{p + q}. \quad (2)$$

- **Maximum Rate per Channel:** When a secondary user transmits successfully on an idle channel, it achieves a data rate of B. Here we assume that channels and users are homogeneous.

- **Congestion Effect:** When multiple secondary users try to access the same channel, each secondary user will execute the following two steps:

 - Randomly generate a backoff timer value τ according to a common uniform distribution on $(0, \tau_{\max})$.
 - Once the timer expires, monitor the channel and transmit data only if the channel is clear.

Lemma 1. If $k_m(t)$ secondary users compete to access to the same channel m at time slot t, then the expected throughput of each user is $\frac{B S_m(t)}{k_m(t)}$.

Lemma 1 shows that expected throughput of a secondary user decreases as the number of users accessing the same channel increases. However, the total expected rate of all $k_m(t)$ secondary users is $B S_m(t)$, i.e., there is no wasted resource due to users’ competition. Due to space limitations, we give the detailed proof of Lemma 1 in [7].

2This may not be true for other random MAC mechanisms such as the slotted Aloha.
III. REVIEW OF STATIC CHANNEL RECOMMENDATION

The key idea of the static channel recommendation scheme in [5] is that secondary users inform each other about the available channels they have just accessed. More specifically, each secondary user executes the following three stages synchronously during each time slot (See Figure 2):

- **Spectrum sensing:** sense one of the channels based on channel selection result made at the end of the previous time slot.
- **Data transmission:** if the channel sensing result is idle, compete for the channel with the timer mechanism described in Section II. Then transmit data packets if the user successfully grabs the channel.
- **Channel recommendation and selection:**
 - **Announce recommendation:** if the user has successfully accessed an idle channel, broadcast this channel ID to all other secondary users.
 - **Collect recommendation:** collect recommendations from other secondary users and store them in a buffer. Typically, the correlation of channel availabilities between two slots diminishes as the time difference increases. Therefore, each secondary user will only keep the recommendations received from the most recent W slots and discard the out-of-date information. The user’s own successful transmission history within W recent time slots is also stored in the buffer. W is a system design parameter and will be further discussed later.
 - **Select channel:** choose a channel to sense at the next time slot by putting more weights on the recommended channels according to a static branching probability P_{rec}. Suppose that the user has R different channel recommendations in the buffer, then the probability of accessing a channel m is

\[
P_m = \begin{cases}
\frac{P_{rec}}{R} & \text{if channel } m \text{ is recommended,} \\
1 - \frac{P_{rec}}{R} & \text{otherwise,}
\end{cases}
\]

A larger value of P_{rec} means that putting more weight on the recommended channels.

To illustrate the channel selection process, let us take the network in Figure 1 as an example. Suppose that the branching probability $P_{rec} = 0.4$. Since only $R = 1$ recommendation is available (i.e., channel 4), the probabilities of choosing the recommended channel 4 and any unrecommended channel are $\frac{0.4}{1} = 0.4$ and $\frac{1-0.4}{1-0.4} = 0.12$, respectively.

Numerical studies in [5] showed that the static channel recommendation scheme achieves a higher performance over the traditional random channel access scheme without information exchange. However, the fixed value of P_{rec} limits the performance of the static scheme, as explained next.

IV. MOTIVATIONS FOR ADAPTIVE CHANNEL RECOMMENDATION

The static channel recommendation mechanism is simple to implement due to a fixed value of P_{rec}. However, it may lead to significant congestions when the number of recommended channels is small. In the extreme case when only $R = 1$ channel is recommended, calculation (3) suggests that every user will access that channel with a probability P_{rec}. When the number of users N is large, the expected number of users accessing this channel NP_{rec} will be high. Thus heavy congestion happens and each secondary user will get a low expected throughput.

A better way is to adaptively change the value of P_{rec} based on the number of recommended channels. This is the key idea of our proposed algorithm. To illustrate the advantage of adaptive algorithms, let us first consider a simple heuristic adaptive algorithm. In this algorithm, we choose the branching probability such that the expected number of secondary users choosing a single recommended channel is one. To achieve this, we need to set P_{rec} as in Lemma 2.

Lemma 2. If we choose the branching probability $P_{rec} = \frac{R}{N}$, then the expected number of secondary users choosing any one of the R recommended channels is one.

Due to space limitations, we give the detailed proof of Lemma 2 in [7].

Without going through detailed analysis, it is straightforward to show the benefit for such adaptive approach through simple numerical examples. Let us consider a network with $M = 10$ channels and $N = 5$ secondary users. For each channel m, the initial channel state probability vector is $p_m(0) = (0, 1)$ and the transition matrix is

\[
\Gamma = \begin{bmatrix}
1 - 0.01\epsilon & 0.01\epsilon \\
0.01\epsilon & 1 - 0.01\epsilon
\end{bmatrix},
\]

where ϵ is called the dynamic factor. A larger value of ϵ implies that the channels are more dynamic over time. We are interested in time average system throughput

\[
U = \frac{1}{T} \sum_{t=1}^{T} \sum_{n=1}^{N} u_n(t),
\]

where $u_n(t)$ is the throughput of user n at time slot t. In the simulation, we set the total number of time slots $T = 2000$.

We implement the following three channel access schemes:

- Random access scheme: each secondary user selects a channel randomly.
- Static channel recommendation scheme as in [5] with the optimal constant branching probability $P_{rec} = 0.7$.
- Heuristic adaptive channel recommendation scheme with the variable branching probability $P_{rec} = \frac{R}{N}$.

Figure 4 shows that the heuristic adaptive channel recommendation scheme outperforms the static channel recommendation scheme, which in turn outperforms the random access scheme. Moreover, the heuristic adaptive scheme is more robust to the dynamic channel environment, as it decreases slower than the static scheme when ϵ increases.

We can imagine that an optimal adaptive scheme (by setting the right $P_{rec}(t)$ over time) can further increase the network performance. However, computing the optimal branching probability in closed-form is very difficult. In the rest of the paper, we will focus on characterizing the structures of the optimal spectrum access strategy and designing an efficient algorithm to achieve the optimum.
A. MDP Formulation For Adaptive Channel Recommendation

We model the system as a MDP as follows:

- **System state**: $R \in \mathcal{R} \triangleq \{0, 1, \ldots, \min\{M, N\}\}$ denotes the number of recommended channels at the end of time slot t. Since we assume that all channels are statistically identical, then there is no need to keep track of the recommended channel IDs.

- **Action**: $P_{rec} \in \mathcal{P} \triangleq (0, 1)$ denotes the branching probability of choosing the set of recommended channels.

- **Transition probability**: The probability that action P_{rec} in system state R in time slot t will lead to system state R' in the next time slot is

$$P^P_{R,R'} = Pr\{R(t+1) = R' | R(t) = R, P_{rec}(t) = P_{rec}\}.$$

We can compute this probability as in (4), with detailed derivations given in [7].

- **Reward**: $U(R, P_{rec})$ is the expected system throughput in next time slot when the action P_{rec} is taken in current system state R, i.e.,

$$U(R, P_{rec}) = \sum_{R' \in \mathcal{R}'} P^P_{R,R'} U_{R'},$$

where $U_{R'}$ is the system throughput in state R'. If R' idle channels are utilized by the secondary users in a time slot, then these R' channels will be recommended at the end of the time slot. Thus, we have

$$U_{R'} = R'B.$$

Recall that B is the data rate that a single user can obtain on an idle channel.

- **Stationary Policy**: $\pi \in \Omega \triangleq \mathcal{P}^{\mathcal{R}}$ maps from each state R to an action P_{rec}, i.e. $\pi(R)$ is the action P_{rec} taken when the system is in state R. The mapping is stationary and does not depend on time t.

Given a stationary policy π and the initial state $R_0 \in \mathcal{R}$, we define the network’s value function as the time average system throughput, i.e.

$$\Phi_{\pi}(R_0) = \lim_{T \to \infty} \frac{1}{T} E_{\pi} \left[\sum_{t=0}^{T-1} U(R(t), \pi(R(t))) \right].$$

We want to find an optimal stationary policy π^* that maximizes the value function $\Phi_{\pi}(R_0)$ for any initial state R_0, i.e.

$$\pi^* = \arg \max_{\pi} \Phi_{\pi}(R_0), \forall R_0 \in \mathcal{R}.$$

Notice that this is a system wide optimization, although the optimal solution can be implemented in a distributed fashion. This is because every user knows the number of recommended channels R, and it can determine the same optimal access probability locally.

B. Existence of Optimal Stationary Policy

MDP formulation above is an average reward based MDP. We can prove that an optimal stationary policy that is independent of initial system state always exists in our MDP formulation. The proof relies on the following lemma from [9].

Lemma 3. If the state space is finite and every stationary policy leads to an irreducible Markov chain, then there exists a stationary policy that is optimal for the average reward based MDP.

The irreducibility of Markov chain means that it is possible to get to any state from any state. For the adaptive channel recommendation scheme, we have

Lemma 4. Given a stationary policy π for the adaptive channel recommendation MDP, the resulting Markov chain is irreducible.

Proof: We consider the following two cases:

Case I, when $0 < q < 1$: since $0 < P_{rec} < 1, 0 < p \leq 1$, and $0 < q < 1$, we can verify that given any state R, the transition probability $P^{P_{rec}}_{R,R'} > 0$ for all $R' \in \mathcal{R}$. Thus, any two states communicate with each other.

Case II, when $q = 1$: for all $R \in \mathcal{R}$, the transition probability $P^{P_{rec}}_{R,R'} > 0$ if $R' \in \{0, \ldots, \min\{M, N\}\}$. It follows that the state $R' = 0$ is accessible from any other state $R \in \mathcal{R}$. By setting $R = 0$, we see that $P^{P_{rec}}_{R,R'} > 0$, for all $R' \in \{0, \ldots, \min\{M, N\}\}$. That is, any other state $R' \in \mathcal{R}$ is also accessible from the state $R = 0$. Thus, any two states communicate with each other.

Since any two states communicate with each other in all cases and the number of system state $|\mathcal{R}|$ is finite, the resulting Markov chain is irreducible.

Combining Lemmas 3 and 4, we have

Theorem 1. There exists an optimal stationary policy for the adaptive channel recommendation MDP.
Furthermore, the irreducibility of the adaptive channel recommendation MDP also implies that the optimal stationary policy \(\pi^* \) is independent of the initial state \(R_0 \) \([9]\), i.e.,

\[
\Phi_{\pi^*}(R_0) = \Phi_{\pi^*}, \forall R_0 \in \mathcal{R},
\]

where \(\Phi_{\pi^*} \) is the maximum time average system throughput. In the rest of the paper, we will just use “optimal policy” to refer “optimal stationary policy that is independent of the initial system state”.

C. Structure of Optimal Stationary Policy

Next we characterize the structure of the optimal policy without using the closed-form expressions of the policy (which is generally hard to achieve). The key idea is to treat the average reward based MDPs as the limit of a sequence of discounted reward MDPs with discounted factors going to one. Under the irreducibility condition, the average reward based MDP thus inherits the structure property from the corresponding discounted reward MDP \([9]\). We can write down the Bellman equations of the discounted version of our MDP problem as:

\[
V_t(R) = \max_{P_{rec} \in \mathcal{P}} \sum_{R' \in \mathcal{R}} P^R_{R,R'}(U_{R'} + \beta V_{t+1}(R')) \tag{5}
\]

where \(V_t(R) \) is the discounted maximum expected system throughput starting from time slot \(t \) when the system in state \(R \).

Due to the combinatorial complexity of the transition probability \(P^R_{R,R'} \) in (4), it is difficult to obtain the structure results for the general case. We further limit our attention to the following two asymptotic cases.

1) **Case One**, the number of channels \(M \) goes to infinity while the number of users \(N \) stays finite: In this case, the number of channels is much larger than the number of secondary users, and thus heavy congestion rarely happens on any channel. Thus it is safe to emphasizing on accessing the recommended channels. Before proving the main result of Case One in Theorem 2, let us first characterize the property of discounted maximum expected system payoff \(V_t(R) \).

Proposition 1. When \(M = \infty \) and \(N < \infty \), the value function \(V_t(R) \) for the discounted adaptive channel recommendation MDP is nondecreasing in \(R \).

The proof of Proposition 1 is given in the Appendix. Based on the monotone property of the value function \(V_t(R) \), we prove the following main result.

Theorem 2. When \(M = \infty \) and \(N < \infty \), for the adaptive channel recommendation MDP, the optimal stationary policy \(\pi^* \) is monotone, that is, \(\pi^*(R) \) is nondecreasing on \(R \in \mathcal{R} \).

\[
P^R_{R,R'}(U_{R'} + \beta V_{t+1}(R'))
\]

Proof: For the ease of discussion, we define

\[
Q_t(R, P_{rec}) = \sum_{R' \in \mathcal{R}} P^R_{R,R'}(U_{R'} + \beta V_{t+1}(R'))
\]

with the partial cross derivative being

\[
\frac{\partial^2 Q_t(R, P_{rec})}{\partial R \partial P_{rec}} = \frac{\partial}{\partial P_{rec}} \sum_{R' \in \mathcal{R}} P^R_{R,R'}(U_{R'} + \beta V_{t+1}(R')) - \frac{\partial}{\partial P_{rec}} \sum_{R' \in \mathcal{R}} P^R_{R,R'}(U_{R'} + \beta V_{t+1}(R'))
\]

By Lemma 6 in the Appendix of \([7]\), we know the reverse cumulative distribution function \(\sum_{R' \in \mathcal{R}} P^R_{R,R'} \) is supermodular on \(\mathcal{R} \times \mathcal{P} \). It implies

\[
\frac{\partial}{\partial P_{rec}} \sum_{R' \in \mathcal{R}} P^R_{R+1,R'} - \frac{\partial}{\partial P_{rec}} \sum_{R' \in \mathcal{R}} P^R_{R,R'} \geq 0.
\]

Since \(V_{t+1}(R') \) is nondecreasing in \(R' \) by Proposition 1 and \(U_{R'} = R'B \), we know that \(U_{R'} + \beta V_{t+1}(R') \) is also nondecreasing in \(R' \). Then we have

\[
\frac{\partial}{\partial P_{rec}} \sum_{R' \in \mathcal{R}} P^R_{R+1,R'}(U_{R'} + \beta V_{t+1}(R')) \geq \frac{\partial}{\partial P_{rec}} \sum_{R' \in \mathcal{R}} P^R_{R,R'}(U_{R'} + \beta V_{t+1}(R'))
\]

i.e.,

\[
\frac{\partial^2 Q_t(R, P_{rec})}{\partial R \partial P_{rec}} \geq 0,
\]

which implies that \(Q_t(R, P_{rec}) \) is supermodular on \(\mathcal{R} \times \mathcal{P} \). Since \(\pi^*(R) = \arg \max_{P_{rec}} Q_t(R, P_{rec}) \), by the property of super-modularity, the optimal policy \(\pi^*(R) \) is nondecreasing on \(R \) for the discounted MDP above. Since the average reward based MDP inherits its structure property, this result is also true for the adaptive channel recommendation MDP.

2) **Case Two**, the number of users \(N \) goes to infinity while the number of channels \(M \) stays finite: In this case, the number of secondary users is much larger than the number of channels, and thus congestion becomes a major concern. However, since there are infinitely many secondary users, all the idle channels at each time slot can be utilized as long as users have positive probabilities to access all channels. From the system’s point of view, the cognitive radio network operates in the saturation state. Formally, we show that

Theorem 3. When \(N = \infty \) and \(M < \infty \), for the adaptive channel recommendation MDP, any stationary policy \(\pi \) satisfying

\[
0 < \pi(R) < 1, \forall R \in \mathcal{R},
\]
is optimal.

Proof: We first define the sets of policies $\Delta \triangleq \{\pi : 0 < \pi(R) < 1, \forall R \in \mathcal{R}\}$ and $\Delta^c = \Omega \setminus \Delta$. Recall that the value of $\pi(R)$ equals the probability of choosing the set of recommended channels, i.e., P_{rec}.

Then it is easy to check that the probability of accessing an arbitrary channel m is positive under any policy $\pi \in \Delta$. Since the number of secondary users $N = \infty$, it implies that all the channels will be accessed by the secondary users. In this case, the transition probability from a system state \hat{R} to \hat{R}' of the resulting Markov chain is given by

$$P_{\hat{R}, \hat{R}'}^{\pi(R)} \triangleq \sum_{m_r + m_u = R', m_r \leq R, m_u \leq M-R}(\frac{R}{m_r})(1-q)^{m_r}q^{R-m_r} \cdot (\frac{M-R}{m_u})(\frac{p}{p+q})^{m_u}(\frac{q}{p+q})^{M-R-m_u}$$

which equals the probability of choosing the set of secondary users. For a policy π' where there exists some states \hat{R} such that $\pi'(\hat{R}) = 0$, the transition probability from the system state \hat{R} to \hat{R}' is

$$P_{\hat{R}, \hat{R}'}^{\pi'(R)} = \begin{cases} \left(\frac{M-\hat{R}}{\hat{R}'}\right)\left(\frac{\hat{R}}{\hat{R}'}\right)(1-q)^{R'}q^{\hat{R}-R'} & \text{if $R' \leq M-\hat{R}$,} \\ 0 & \text{if $R' > M-\hat{R}$,} \end{cases}$$

If there exists some states \hat{R} such that $\pi'(\hat{R}) = 1$, we have the transition probability as

$$P_{\hat{R}, \hat{R}'}^{\pi'(R)} = \begin{cases} \left(\frac{\hat{R}}{\hat{R}'}\right)(1-q)^{R'}q^{\hat{R}-R'} & \text{if $R' \leq \hat{R}$,} \\ 0 & \text{if $R' > \hat{R}$,} \end{cases}$$

By starting from time slot t, we can show that

$$V_t^\pi(R) = V_{t+1}^\pi(R), \forall R \in \mathcal{R}, \pi \in \Delta, \pi' \in \Delta^c.$$
a specified probabilistic model. The method then generates candidate solutions and updates the probabilistic model on the basis of elite solutions and a reference model, so that to guide the future search toward better solutions.

Formally, let $J(x)$ be the objective function to maximize. The MRAS method is an iterative algorithm, and it includes three phases in each iteration k:

- **Random solution generation**: generate a set of random solutions $\{x\}$ in the feasible set χ according to a parameterized probabilistic model $f(x, v_k)$, which is a probability density function (pdf) with parameter v_k. The number of solutions to generate is a fixed system parameter.
- **Reference distribution construction**: select elite solutions among the randomly generated set, such that the chosen ones satisfy $J(x) \geq \gamma$. Construct a reference probability distribution as

$$g_k(x) = \begin{cases} \frac{I_{\{x \mid J(x) \geq \gamma\}}}{E_{f(x,v_0)}[I_{\{x \mid J(x) \geq \gamma\}}]} \cdot \frac{e^{f(x)}}{E_{g_{k-1}}[e^{f(x)}]} & k = 1, \\ \frac{e^{f(x)g_{k-1}(x)}}{E_{g_{k-1}}[e^{f(x)}]} & k \geq 2, \end{cases}$$

(7)

where $I_{\{x\}}$ is an indicator function, which equals 1 if the event ω is true and zero otherwise. Parameter v_0 is the initial parameter for the probabilistic model (used during the first iteration, i.e., $k = 1$), and $g_{k-1}(x)$ is the reference distribution in the previous iteration (used when $k \geq 2$).
- **Probabilistic model update**: update the parameter v of the probabilistic model $f(x, v)$ by minimizing the Kullback-Leibler divergence between $g_k(x)$ and $f(x, v)$, i.e.

$$v_{k+1} = \arg \min_v E_{g_k} \left[\ln \frac{g_k(x)}{f(x,v)} \right].$$

(8)

By constructing the reference distribution according to (7), the expected performance of random elite solutions can be improved under the new reference distribution, i.e.,

$$E_{g_k}[e^{J(x)}I_{\{x \mid J(x) \geq \gamma\}}] = \int_{x \in \chi} e^{J(x)}I_{\{x \mid J(x) \geq \gamma\}}g_{k-1}(x)dx \geq \frac{E_{g_{k-1}}[e^{J(x)}I_{\{x \mid J(x) \geq \gamma\}}]}{E_{g_{k-1}}[e^{J(x)}I_{\{x \mid J(x) \geq \gamma\}}]} \geq E_{g_{k-1}}[e^{J(x)}I_{\{x \mid J(x) \geq \gamma\}}].$$

(9)

To find a better solution to the optimization problem, it is natural to update the probabilistic model (from which random solutions are generated in the first stage) so as close to the new reference probability as possible, as done in the third stage.

B. Model Reference Adaptive Search For Optimal Spectrum Access Policy

In this section, we design an algorithm based on the MRAS method to find the optimal spectrum access policy. Here we treat the adaptive channel recommendation MDP as a global optimization problem over the policy space. The key challenge is the choice of proper probabilistic model $f(\cdot)$, which is crucial for the convergence of the MRAS algorithm.

1) **Random Policy Generation**: To apply the MRAS method, we first need to set up a random policy generation mechanism. Since the action space of the channel recommendation MDP is continuous, we use the Gaussian distributions. Specifically, we generate sample actions $\pi(R)$ from a Gaussian distribution for each system state $R \in \mathcal{R}$ independently, i.e. $\pi(R) \sim N(\mu_R, \sigma_R^2)$. In this case, a candidate policy π can be generated from the joint distribution of $|R|$ independent Gaussian distributions, i.e.,

$$(\pi(0), ..., \pi(\min\{M,N\})) \sim N(\mu_0, \sigma_0^2) \times \cdots \times N(\mu_{\min\{M,N\}}, \sigma_{\min\{M,N\}}^2).$$

As shown later, Gaussian distribution has nice analytical and convergent properties for the MRAS method.

2) **System Throughput Evaluation**: Given a candidate policy π randomly generated based on $f(\pi, \mu, \sigma)$, we need to evaluate the expected system throughput Φ_π. From (4), we obtain the transition probabilities $P_{R,R'}(\pi)$ for any system state $R, R' \in \mathcal{R}$. Since a policy π leads to a finite irreducible Markov chain, we can obtain its stationary distribution. Let us denote the transition matrix of the Markov chain as $Q \triangleq [P_{R,R'}(\pi)]_{|R| \times |R|}$ and the stationary distribution as $\mathbf{p} = (Pr(0), ..., Pr(\min\{M,N\}))$. Obviously, the stationary distribution can be obtained by solving the following equation

$$pQ = \mathbf{p}.$$

We then calculate the expected system throughput Φ_π by

$$\Phi_\pi = \sum_{R \in \mathcal{R}} Pr(R)U_R.$$

Note that in the discussion above, we assume that $\pi \in \Omega$ implicitly, where Ω is the feasible policy space. Since Gaussian distribution has a support over $(-\infty, +\infty)$, we thus extend the definition of expected system throughput Φ_π over $(-\infty, +\infty)$ to \mathcal{R} as

$$\Phi_\pi = \left\{ \sum_{R \in \mathcal{R}} Pr(R)U_R \quad \pi \in \Omega \right\}_{\infty \leftarrow -\infty}.$$
3) Reference Distribution Construction: To construct the reference distribution, we first need to select the elite policies. Suppose L candidate policies, $\pi_1, \pi_2, \ldots, \pi_L$, are generated at each iteration. We order them based on an increasing order of the expected system throughputs Φ, i.e., $\Phi_{\pi_1} \leq \Phi_{\pi_2} \leq \ldots \leq \Phi_{\pi_L}$, and set the elite threshold as

$$\gamma = \Phi_{\pi_{\lceil (1-\rho)L \rceil}}$$

where $0 < \rho < 1$ is the elite ratio. For example, when $L = 100$ and $\rho = 0.4$, then $\gamma = \Phi_{\pi_{60}}$ and the last 40 samples in the sequence will be selected as elite samples. Note that as long as L is sufficiently large, we shall have $\gamma < \infty$ and hence only feasible policies π are selected. According to (7), we then construct the reference distribution as

$$g_k(\pi) = \begin{cases} \frac{I^{(k+\gamma)}}{E^f(\pi, \mu, \sigma)} \quad & k = 1, \\ \frac{e^{\pi I^{(k+\gamma)}}}{E^f(\pi, \mu, \sigma)} \quad & k \geq 2. \end{cases}$$

4) Policy Generation Update: For the MRAS algorithm, the critical issue is the updating of random policy generation mechanism $f(\pi, \mu, \sigma)$, or solving the problem in (8). The optimal update rule is described as follow.

Theorem 4. The optimal parameter (μ, σ) that minimizes the Kullback-Leibler divergence between the reference distribution $g_k(\pi)$ in (10) and the new policy generation mechanism $f(\pi, \mu, \sigma)$ is

$$\mu_R = \frac{\int_{\pi \in \Omega} e^{(k-1)\Phi(\pi)} f(\pi, \mu, \sigma) d\pi}{\int_{\pi \in \Omega} e^{(k-1)\Phi(\pi)} f(\pi, \mu, \sigma) d\pi}, \forall R \in \mathcal{R}, \quad (11)$$

$$\sigma_R^2 = \frac{\int_{\pi \in \Omega} e^{(k-1)\Phi(\pi)} [f(\pi, \mu, \sigma) - \mu_R]^2 d\pi}{\int_{\pi \in \Omega} e^{(k-1)\Phi(\pi)} f(\pi, \mu, \sigma) d\pi}, \forall R \in \mathcal{R}. \quad (12)$$

Proof: First, from (10), we have

$$g_1(\pi) = \frac{I^{(\Phi+\gamma)}}{E^f(\pi, \mu, \sigma)}, \mid k \mid = 1,$$

and,

$$g_2(\pi) = \frac{e^{\Phi} I^{(\Phi+\gamma)} g_1(\pi)}{E^f(\pi, \mu, \sigma)} = \frac{e^{\Phi} I^{(\Phi+\gamma)} [f(\pi, \mu, \sigma)]}{E^f(\pi, \mu, \sigma)} \mid = \frac{e^{\Phi} I^{(\Phi+\gamma)} [f(\pi, \mu, \sigma)]}{E^f(\pi, \mu, \sigma)} d\pi.$$

Repeat the above computation iteratively, we have

$$g_k(\pi) = \frac{e^{(k-1)\Phi(\pi)}}{\int_{\pi \in \Omega} e^{(k-1)\Phi(\pi)} f(\pi, \mu, \sigma) d\pi}, \quad k \geq 1. \quad (13)$$

Then, the problem in (8) is equivalent to solving

$$\max_{\mu, \sigma} \int_{\pi \in \Omega} g_k(\pi) \ln f(\pi, \mu, \sigma) d\pi, \quad (14)$$

subject to $\mu, \sigma \geq 0$.

Substituting (13) into (14), we have

$$\max_{\mu, \sigma} \int_{\pi \in \Omega} e^{(k-1)\Phi(\pi)} f(\pi, \mu, \sigma) d\pi, \quad (15)$$

subject to $\mu, \sigma \geq 0$.

Function $f(\pi(R), \mu_R, \sigma_R)$ is log-concave, since it is the pdf of the Gaussian distribution. Since the log-concavity is closed under multiplication, then $f(\pi, \mu, \sigma) = \prod_{R=0}^{\min(M,N)} f(\pi(R), \mu_R, \sigma_R)$ is also log-concave. It implies the problem in (14) is a concave optimization problem. Solving by the first order condition, we have

$$\frac{\partial}{\partial \mu_R} \int_{\pi \in \Omega} e^{(k-1)\Phi(\pi)} f(\pi, \mu, \sigma) d\pi = 0, \forall R \in \mathcal{R},$$

$$\frac{\partial}{\partial \sigma_R} \int_{\pi \in \Omega} e^{(k-1)\Phi(\pi)} f(\pi, \mu, \sigma) d\pi = 0, \forall R \in \mathcal{R},$$

which leads to (11) and (12). Due to the convexity of the optimization problem in (14), the solution is also the global optimum for the random policy generation updating.

5) MARS Algorithm For Optimal Spectrum Access Policy: Based on the MARS algorithm, we generate L candidate polices at each iteration. Then the updates in (11) and (12) are replaced by the sample average version in (18) and (19) respectively. As a summary, we describe the MARS-based algorithm for finding the optimal spectrum access policy of adaptive channel recommendation MDP in Algorithm 1.

C. Convergence of Model Reference Adaptive Search

In this part, we discuss the convergence property of the MRAS-based optimal spectrum access policy. For ease of exposition, we assume that the adaptive channel recommendation MDP has a unique global optimal policy. Numerical studies in [6] show that the MARS method also converges for the multiple global optimums case. We shall show that the random policy generation mechanism $f(\pi, \mu_k, \sigma_k)$ will eventually generate the optimal policy.

Theorem 5. For the MRAS algorithm, the limiting point of the policy sequence $\{\pi_k\}$ generated by the sequence of random policy generation mechanism $\{f(\pi, \mu_k, \sigma_k)\}$ converges pointwisely to the optimal spectrum access policy π^* for the adaptive channel recommendation MDP, i.e.

$$\lim_{k \to \infty} E_{f(\pi, \mu_k, \sigma_k)}(\pi(R)) = \pi^*(R), \forall R \in \mathcal{R}, \quad (16)$$

$$\lim_{k \to \infty} Var_{f(\pi, \mu_k, \sigma_k)}(\pi(R)) = 0, \forall R \in \mathcal{R}. \quad (17)$$

The proof is given in [7].

From Theorem 5, we see that parameter $(\mu_{R,k}, \sigma_{R,k})$ in updating in (18) and (19) also converges, i.e.

$$\lim_{k \to \infty} \mu_{R,k} = \pi^*(R), \forall R \in \mathcal{R},$$

$$\lim_{k \to \infty} \sigma_{R,k} = 0, \forall R \in \mathcal{R}. \quad (18)$$

Thus, we can use $\max_{R \in \mathcal{R}} \sigma_R < \xi$ as the stopping criterion in Algorithm 1.
Algorithm 1 MRAS-based Algorithm For Adaptive Recommendation Based Optimal Spectrum Access

1: Initialize parameters for Gaussian distributions \((\mu_0, \sigma_0) \), the elite ratio \(\rho \), and the stopping criterion \(\xi \). Set initial elite threshold \(\gamma_0 = 0 \) and iteration index \(k = 0 \).
2: repeat:
3: Increase iteration index \(k \) by 1.
4: Generate \(L \) candidate policies \(\pi_1, \ldots, \pi_L \) from the random policy generation mechanism \(f(\pi, \mu_{k-1}, \sigma_{k-1}) \).
5: Select elite policies by setting the elite threshold \(\gamma_k = \max\{\Phi_{\pi_i(1-\mu L)}, \gamma_{k-1}\} \).
6: Update the random policy generation mechanism by
 \[
 \mu_{R,k} = \frac{\sum_{i=1}^L e^{(k-1)\Phi_{\pi_i(1-\mu L)} \Phi_{\pi_i(\gamma_k)}} \pi_i(R)}{\sum_{i=1}^L e^{(k-1)\Phi_{\pi_i(\gamma_k)}}}, \quad \forall R \in \mathcal{R},
 \]
 \[
 \sigma_{R,k}^2 = \frac{\sum_{i=1}^L e^{(k-1)\Phi_{\pi_i(1-\mu L)} \Phi_{\pi_i(\gamma_k)}} \pi_i(R) - \mu_{R,k}^2}{\sum_{i=1}^L e^{(k-1)\Phi_{\pi_i(\gamma_k)}}}, \quad \forall R \in \mathcal{R}.
 \]
7: until \(\max_{R \in \mathcal{R}} \sigma_R < \xi \).

VII. SIMULATION RESULTS

In this section, we investigate the proposed adaptive channel recommendation scheme by simulations. The results show that the adaptive channel recommendation scheme not only achieves a higher performance over the static channel recommendation scheme and random access scheme, but also is more robust to the dynamic change of the channel environments.

A. Simulation Setup

We consider a cognitive radio network consisting of multiple independent and statistically identical primary channels. In order to take the impact of primary user’s long run behavior into account, we consider the following two types of channel state transition matrices:

\[
\text{Type 1: } \Gamma_1 = \begin{bmatrix} 1 - 0.005\epsilon & 0.005\epsilon \\ 0.025\epsilon & 1 - 0.025\epsilon \end{bmatrix}, \quad (20)
\]

\[
\text{Type 2: } \Gamma_2 = \begin{bmatrix} 1 - 0.01\epsilon & 0.01\epsilon \\ 0.01\epsilon & 1 - 0.01\epsilon \end{bmatrix}, \quad (21)
\]

where \(\epsilon \) is the dynamic factor. Recall that a larger \(\epsilon \) means that the channels are more dynamic over time. Using (2), we know that channel models \(\Gamma_1 \) and \(\Gamma_2 \) have the stationary channel idle probabilities of \(1/6 \) and \(1/2 \), respectively. In other words, the primary activity level is much higher with the Type 1 channel than with the Type 2 channel.

We initialize the parameters of MRAS algorithm as follows. We set \(\mu_R = 0.5 \) and \(\sigma_R = 0.5 \) for the Gaussian distribution, which has 68.2% support over the feasible region \((0, 1) \). We found that the performance of the MRAS algorithm is insensitive to the elite ratio \(\rho \) when \(\rho \leq 0.3 \). We thus choose \(\rho = 0.1 \).

When using the MRAS-based algorithm, we need to determine how many (feasible) candidate policies to generate in each iteration. Figure 5 shows the convergence of MRAS algorithm with 100, 300, and 500 candidate policies per iteration, respectively. We have two observations. First, the number of iterations to achieve convergence reduces as the number of candidate policies increases. Second, the convergence speed is insignificant when the number changes from 300 to 500. We thus choose \(L = 500 \) for the experiments in the sequel.

B. Simulation Results

We consider two simulation scenarios: (1) the number of channels is greater than the number of secondary users, and (2) the number of channels is smaller than the number of secondary users. For each case, we compare the adaptive channel recommendation scheme with the static channel recommendation scheme in [5] and a random access scheme.

Fig. 6. System throughput with \(M = 10 \) channels and \(N = 5 \) users under the Type 1 channel state transition matrix

1) More Channels, Fewer Users: We implement three spectrum access schemes with \(M = 10 \) channels and \(N = 5 \) secondary users. As there are enough channels to choose from, congestion is not a major issue in this setting. We choose the dynamic factor \(\epsilon \) within a wide range to investigate the robustness of the schemes to the channel dynamics. The results are shown in Figures 6 – 9. From these figures, we see that
• **Superior performance of adaptive channel recommendation scheme (Figures 6 and 7):** the adaptive channel recommendation scheme performs better than the random access scheme and static channel recommendation scheme. Typically, it offers 5%~18% performance gain over the static channel recommendation scheme.

• **Impact of channel dynamics (Figures 6 and 7):** the performances of both adaptive and static channel recommendation schemes degrade as the dynamic factor ϵ increases. The reason is that both two schemes rely on the recommendation information from previous time slots to make decisions. When channel states change rapidly, the value of recommendation information diminishes. However, the adaptive channel recommendation is much more robust to the dynamic channel environment changing (See Figure 9). This is because the optimal adaptive policy takes the channel dynamics into account while the static one does not.

• **Impact of channel idleness level (Figures 8 and 9):** Figure 8 shows the performance gain of the adaptive channel recommendation scheme over the random access scheme under two different types of transition matrix scenarios. We see that the performance gain decreases with the idle probability of the channel. This shows that the information of channel recommendations can enhance the spectrum access more efficiently when the primary activity level increases (i.e., when the channel idle probability is low). Interestingly, Figure 9 shows that the performance gain of the adaptive channel recommendation scheme over the static channel recommendation scheme trends to increase with the channel idleness probability. This illustrates that the adaptive channel recommendation scheme can better utilize the channel opportunities given the information of channel recommendations.

2) **Fewer Channels, More Users:** We next consider the case of $M = 5$ channels and $N = 10$ users, and show the simulation results in Figures 10 and 11. We can check that the observations in Section VII-B1 still hold. In other words, the adaptive channel recommendation scheme still has a better performance than static one and random access scheme when the cognitive radio network suffers serve congestion effect.

![Fig. 7. System throughput with $M = 10$ channels and $N = 5$ users under the Type 2 channel state transition matrix.](image1)

![Fig. 8. Performance gain over random access scheme. The Type 1 and Type 2 channels have the stationary channel idle probabilities of $1/6$ and $1/2$, respectively.](image2)

![Fig. 9. Performance gain over static channel recommendation scheme. The Type 1 and Type 2 channels have the stationary channel idle probabilities of $1/6$ and $1/2$, respectively.](image3)

C. **Comparison of MRAS algorithm and Q-Learning**

To benchmark the performance of the spectrum access policy based on the MRAS algorithm, we compare it with the policy obtained by Q-learning algorithm [10].

Since the Q-learning can only be used over the discrete action space, we first discretize the action space P into a finite discrete action space $\hat{P} = \{0.1, \ldots, 1.0\}$. The Q-learning then defines a Q-value representing the estimated quality of a state-action combination as

$$Q: \mathcal{R} \times \hat{P}_{rec} \rightarrow \mathbb{R}.$$

Given a new reward $U(R(t), P_{rec}(t))$ is received, we can update the Q-value to be

$$Q(R(t), P_{rec}(t)) = (1 - \alpha)Q(R(t), P_{rec}(t)),
\quad + \alpha[U(R(t), P_{rec}(t)) + \max_{P_{rec} \in \hat{P}} Q(R(t+1), P_{rec})],$$
Fig. 10. System throughput with $M = 5$ channels and $N = 10$ users under Type 1 channel state transition matrix

Fig. 11. System throughput with $M = 5$ channels and $N = 10$ users under Type 2 channel state transition matrix

Fig. 12. Comparison of MRAS-based algorithm and Q-learning with Type 1 channel state transition matrix

Fig. 13. Comparison of MRAS-based algorithm and Q-learning with Type 2 channel state transition matrix

where $0 < \alpha < 1$ is the smoothing factor. Given a system state R, the probability of choosing an action P_{rec} is

$$P_r(P_{rec}(t) = P_{rec}|R(t) = R) = \frac{e^{\tau Q(R,P_{rec})}}{\sum_{P'_r \in \mathcal{P}} e^{\tau Q(R,P'_r)}},$$

where $\tau > 0$ is the temperature.

After the Q-learning converges, we obtain the corresponding spectrum access policy π_Q over the discretized action space \mathcal{P}. Note that π_Q is a sub-optimal policy for the adaptive channel recommendation MDP over the continuous action space \mathcal{P}.

We compare the Q-learning based policy with our MRAS-based optimal policy when there are $M = 10$ channels and $N = 5$ users, and show the simulation results in Figures 12 and 13. From these figures, we see that the MRAS-based algorithm outperforms Q-learning up to 10%, which demonstrates the effectiveness of our proposed algorithm.

VIII. RELATED WORK

The spectrum access by multiple secondary users can be either uncoordinated or coordinated. For the uncoordinated case, multiple secondary users compete with other for the resource. Huang et al. in [11] designed two auction mechanisms to allocate the interference budget among selfish users. Liu et al. in [12] modeled the interactions among spatially separated users as congest games with resource reuse. Li and Han in [13] applied the graphic game theory to address the spectrum access problem with limited range of mutual interference. Anandkumar et al. in [14] proposed a learning-based approach for competitive spectrum access with incomplete spectrum information. Law et al. in [15] showed that uncoordinated spectrum access may lead to poor system performance.

For the coordinated spectrum access, Zhao et al. in [16] proposed a dynamic group formation algorithm to distribute secondary users’ transmissions across multiple channels. Shu and Krunz proposed a multi-level spectrum opportunity framework in [17]. The above papers assumed that each secondary user knows the entire channel occupancy information. We consider the case where each secondary user only has a limited view of the system, and improve each other’s information by recommendation.

Our algorithm design is partially inspired by the recommendation systems in the electronic commerce industry, where analytical methods such as collaborative filtering [18] and multi-armed bandit process modeling [19] are useful. However, we cannot directly apply the existing methods to analyze cognitive radio networks due to the unique congestion effect here.
IX. CONCLUSION

In this paper, we propose an adaptive channel recommendation scheme for efficient spectrum sharing. We formulate the problem as an average reward based Markov decision process. We first prove the existence of the optimal stationary spectrum access policy, and then characterize the structure of the optimal policy in two asymptotic cases. Furthermore, we propose a novel MRAS-based algorithm that is provably convergent to the optimal policy. Numerical results show that our proposed algorithm outperforms the static approach in the literature by up to 18% and the Q-learning method by up to 10% in terms of system throughput. Our algorithm is also more robust to the channel dynamics compared to the static counterpart.

In terms of future work, we are currently extending the analysis by taking the heterogeneity of channels into consideration. We also plan to consider the case where the secondary users are selfish. Design of an incentive-compatible channel recommendation mechanism for that case will be very interesting and challenging.

APPENDIX

A. Proof of Proposition 1

We prove the proposition by induction. Suppose that the time horizon consists of any T time slots.

When \(t = T \), \(V_T(R) = U_R = RB \), and the proposition is trivially true.

Now, we assume it also holds for \(V_t(R) \) when \(t = k + 1, k + 2, ..., T \). Let \(\hat{R} \) be a system state such that \(\hat{R} \geq R \). By the hypothesis, we have \(V_{k+1}(\hat{R}) \geq V_{k+1}(R) \). Let \(\pi^* \) be the optimal policy. From the Bellman equation in (5), we have

\[
V_k(R) = \min_{i \in R} \left\{ \sum_{R'} P_{R'R}^\pi(i) \left[U_{R'} + \beta V_{k+1}(R') \right] \right\}, \forall R \in \mathcal{R}.
\]

Now, let \(\hat{R} \) be a system state such that \(\hat{R} \geq R \). Let \(\pi^* \) be the optimal policy. From the Bellman equation in (5), we have

\[
V_k(R) = \min_{i \in R} \left\{ \sum_{R'} P_{R'R}^\pi(i) \left[U_{R'} + \beta V_{k+1}(R') \right] \right\}, \forall R \in \mathcal{R}.
\]

By defining a new system state \(-1\) such that \(U_{-1} + \beta V_{k+1}(-1) = 0 \), we can rewrite the equation in (22) as

\[
V_k(R) = \min_{i \in R} \left\{ \sum_{R'} P_{R'R}^\pi(i) \left[U_{R'} + \beta V_{k+1}(R') \right] \right\}, \forall R \in \mathcal{R}.
\]

By lemma 5 in the Appendix of [7], we have

\[
\min_{i \in R} \left\{ \sum_{R'} P_{R'R}^\pi(i) \right\} \geq \min_{i \in R} \left\{ \sum_{R'} P_{R'R}^\pi(i) \right\}, \forall R \in \mathcal{R}.
\]

Then

\[
V_k(R) \leq \min_{i \in R} \left\{ \sum_{R'} P_{R'R}^\pi(i) \right\}, \forall R \in \mathcal{R}.
\]

REFERENCES

